Question
The tangent at P on the ellipse meets the minor axis in Q, and PR is drawn perpendicular to the minor axis and C is the centre. Then CQ . CR =
- b2
- 2b2
- a2
- 2a2
Hint:
assume the coordinates of the point P and find out the coordinates of the points Q and R in terms of the point P. find the lengths of the line segments and find the answer.
The correct answer is: b2
b2
Let the point p be (t,u)
The equation of tangent at p : xt/a2+yu/b2=1
Coordinates of point Q : (0, b2/u)
Equation of perpendicular drawn at P to the minor axis:
y= u
coordinates of R: (0,u)
length of CQ = b2/u
length of CR = u
hence, CQ.CR =
the y coordinate of line parallel to the x axis can be calculated from the equation of the line.
Related Questions to study
If P is a point on the ellipse of eccentricity e and A, A' are the vertices and S, S' are the focii then ΔSPS' : ΔAPA'=
If P is a point on the ellipse of eccentricity e and A, A' are the vertices and S, S' are the focii then ΔSPS' : ΔAPA'=
If the latus rectum of the ellipse x2 tan2 + y2 sec2 = 1 is then =
If the latus rectum of the ellipse x2 tan2 + y2 sec2 = 1 is then =
LL' is the latus rectum of an ellipse and ΔSLL' is an equilateral triangle. The eccentricity of the ellipse is -
LL' is the latus rectum of an ellipse and ΔSLL' is an equilateral triangle. The eccentricity of the ellipse is -
The common tangent of x2 + y2 = 4 and 2x2 + y2 = 2 is-
The common tangent of x2 + y2 = 4 and 2x2 + y2 = 2 is-
Eccentric angle of a point on the ellipse x2 + 3y2 = 6 at a distance 2 units from the centre of the ellipse is -
Eccentric angle of a point on the ellipse x2 + 3y2 = 6 at a distance 2 units from the centre of the ellipse is -
The sum of the squares of the perpendicular on any tangent to the ellipse + = 1 from two points on the minor axis each distance from the centre is -
The sum of the squares of the perpendicular on any tangent to the ellipse + = 1 from two points on the minor axis each distance from the centre is -
Let E be the ellipse + = 1 and C be the circle x2 + y2 = 9. Let P and Q be the points (1, 2) and (2, 1) respectively. Then -
Let E be the ellipse + = 1 and C be the circle x2 + y2 = 9. Let P and Q be the points (1, 2) and (2, 1) respectively. Then -
The area of quadrilateral formed by tangents at the ends of latus-rectum of the ellipse x2 + 2y2 = 2 is-
the tangents are symmetrical about the origin. hence, the area of one of the triangles can be multiplied by 4 to get the total area.
The area of quadrilateral formed by tangents at the ends of latus-rectum of the ellipse x2 + 2y2 = 2 is-
the tangents are symmetrical about the origin. hence, the area of one of the triangles can be multiplied by 4 to get the total area.
The locus of mid-points of a focal chord of the ellipse = 1 is-
the equation of chord with a given midpoint is:
xx1/a2+yy1/b2=x12/a2+y12/b2
where (x1,y1) is the midpoint.
The locus of mid-points of a focal chord of the ellipse = 1 is-
the equation of chord with a given midpoint is:
xx1/a2+yy1/b2=x12/a2+y12/b2
where (x1,y1) is the midpoint.
The equation of the chord of the ellipse 2x2 + 5y2 = 20 which is bisected at the point (2,1) is-
The equation of the chord of the ellipse 2x2 + 5y2 = 20 which is bisected at the point (2,1) is-
The locus of the point of intersection of the perpendicular tangents to the ellipse + = 1 is
perpendicular tangents are drawn from the director circle
The locus of the point of intersection of the perpendicular tangents to the ellipse + = 1 is
perpendicular tangents are drawn from the director circle
From the point (, 3) tangents are drawn to + = 1 and are perpendicular to each other then =
perpendicular tangents are drawn from the director circle
From the point (, 3) tangents are drawn to + = 1 and are perpendicular to each other then =
perpendicular tangents are drawn from the director circle
Two perpendicular tangents drawn to the ellipse + = 1 intersect on the curve -
the tangents drawn from the director circle intersect at right angle.
Two perpendicular tangents drawn to the ellipse + = 1 intersect on the curve -
the tangents drawn from the director circle intersect at right angle.
The angle between the pair of tangents drawn to the ellipse 3x2+ 2y2 = 5 from the point (1,2) is-
use the equation of S to find the value of theta.
The angle between the pair of tangents drawn to the ellipse 3x2+ 2y2 = 5 from the point (1,2) is-
use the equation of S to find the value of theta.
Tangents are drawn from a point on the circle x2 + y2 = 25 to the ellipse 9x2 + 16y2 – 144= 0 then find the angle between the tangents.
tangents drawn from director circle to the ellipse make an angle of 90 degrees with themselves.
Tangents are drawn from a point on the circle x2 + y2 = 25 to the ellipse 9x2 + 16y2 – 144= 0 then find the angle between the tangents.
tangents drawn from director circle to the ellipse make an angle of 90 degrees with themselves.