Question
During mineral formation, the same chemical compound can be come different minerals depending on the temperature and pressure at the time of formation. A phase diagram is a graph that shows the conditions that are needed to form each mineral. The graph above is a portion of the phase diagram for aluminosilicates, with the temperature t , in degrees
Celsius , on the horizontal axis, and the pressure p , in gigapascals (G Pa), on the
Which of the following systems of inequalities best describes the region where sillimanite can form?
Hint:
Hint:
We need to find the system of inequalities which describe the region where sillimanite can form. First we find the equation of the boundary line of the region where sillimanite can be formed in the phase diagram. Then we put the inequalities sign in the appropriate equation by observing if the lower or upper part of the line is the region where the sillimanite can be formed.
The correct answer is:
The boundaries of the region where sillimanite can be formed are given by two lines: one is the boundary line between kyanite and sillimanite and the other is the boundary between andalusite and sillimanite.
First we find the equation of the boundary line between kyanite and sillimanite:
There are two points lying on this line : and .
Let these points be denoted by
and
In an xy plane, equation of a line passing through two points (a , b ) and (c , d ) is given by
Using the above points, we have
Simplifying the equation, we have
Cross multiplying, we get
We use the calculator to expand the above equation
Taking all the terms in the left hand side, we get
Dividing by 295 throught, we get
As the region which forms sillimanite is below this line, we change the equality to less thanor equal to inequality,
Next,
We find the equation of the boundary line between andalusite and sillimanite:
There are two points lying on this line and
Let these points be denoted by
In an xy plane, equation of a line passing through two points (a , b ) and (c, d ) is given by
Using the above points, we have
Simplifying the equation, we have
Cross multiplying, we get
We use the calculator to expand the above equation
Taking all the terms in the left hand side, we get
Dividing by 260 throught, we get
As the region which forms sillimanite is above this line, we change the equality to greater than or equal to inequality,
Finally, we get
The inequalities which describe the region where sillimanite is formed are
Rewriting these inequalities, we get
Option B)
best describes the region where silliminate can form.
Note:
We do not have the exact inequalities in the option, so we choose the one from the options which is the closest approximation of the inequalities that we have calculated. There are a couple of formulas and concepts used here, such as the equation of a line passing through two points and the concept that the region below a line is given by replacing the equality sign with less than or equal to in the standard form of the equation and vice versa.
Related Questions to study
If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the two triangles are congruent by
If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the two triangles are congruent by
Solve: and by using elimination method.
Solve: and by using elimination method.
ABCD is a parallelogram of area 162 sq., P is the point on AB such that AP:PB = 1:2, calculate the area of Triangle APD and the ratio PQ:QD, where Q is the point of intersection of AC and PD
ABCD is a parallelogram of area 162 sq., P is the point on AB such that AP:PB = 1:2, calculate the area of Triangle APD and the ratio PQ:QD, where Q is the point of intersection of AC and PD
How many litres of water flows out through a pipe having an area of cross-section of 5 cm2 in one minute, if the speed of water in pipe is 30 cm/sec?
How many litres of water flows out through a pipe having an area of cross-section of 5 cm2 in one minute, if the speed of water in pipe is 30 cm/sec?
Curved surface area of a right circular cylinder of height 14 cm is 88 cm2. Find the volume of the cylinder.
Curved surface area of a right circular cylinder of height 14 cm is 88 cm2. Find the volume of the cylinder.
The sides of a parallelogram are 3cm and 2cm and the distance between two longer sides is 1.5cm. Find the distance between the shorter sides?
The sides of a parallelogram are 3cm and 2cm and the distance between two longer sides is 1.5cm. Find the distance between the shorter sides?
Solve: and
Solve: and
The cross section of a canal is atrapezium in shape. If the canal is 10m wide at the top and 6m wide at the bottom and the area of the cross section is 840 sq. m, find the depth of the canal ?
The cross section of a canal is atrapezium in shape. If the canal is 10m wide at the top and 6m wide at the bottom and the area of the cross section is 840 sq. m, find the depth of the canal ?
The total surface area of a cylinder of height 6.5 cm is 220 sq. cm. Find its volume.
The total surface area of a cylinder of height 6.5 cm is 220 sq. cm. Find its volume.
In a trapezium, the two non parallel sides are equal in length, each being 5 units. The parallel sides are at a distance of 3 units apart. If the smaller side of the parallel side is of length 2 units, then what is the sum of the diagonals of the trapezium ?
In a trapezium, the two non parallel sides are equal in length, each being 5 units. The parallel sides are at a distance of 3 units apart. If the smaller side of the parallel side is of length 2 units, then what is the sum of the diagonals of the trapezium ?
The base radius of a cylinder is 5/3 times its height. The cost of painting its C.S.A. at 2 paise/cm2 is Rs 92.40. What volume of the paint is required?
The base radius of a cylinder is 5/3 times its height. The cost of painting its C.S.A. at 2 paise/cm2 is Rs 92.40. What volume of the paint is required?
During mineral formation, the same chemical compound can beco me different minerals depending on the temperature and pressure at the time of formation. A phase diagram is a graph that shows the conditions that are needed to form each mineral. The graph above is a portion of the phase diagram for aluminosilicates, with the temperature t , in degrees Celsius , on the horizontal axis, and the pressure p , in gigapascals (GPa), on the vertical axis.
An equation of the boundary line between the andalusite and sillimanite regions is approximated by the equation above. What is the meaning of the T-intercept of this line?
Note;
A phase diagram represents the different physical states of some substance under different conditions, such as termperature and pressure, graphically. It may seem like a complicated graph but we just needed to focus on the equation of one given line.
During mineral formation, the same chemical compound can beco me different minerals depending on the temperature and pressure at the time of formation. A phase diagram is a graph that shows the conditions that are needed to form each mineral. The graph above is a portion of the phase diagram for aluminosilicates, with the temperature t , in degrees Celsius , on the horizontal axis, and the pressure p , in gigapascals (GPa), on the vertical axis.
An equation of the boundary line between the andalusite and sillimanite regions is approximated by the equation above. What is the meaning of the T-intercept of this line?
Note;
A phase diagram represents the different physical states of some substance under different conditions, such as termperature and pressure, graphically. It may seem like a complicated graph but we just needed to focus on the equation of one given line.
Solve the system of equation by using elimination:
Solve the system of equation by using elimination:
Farmer Joe had 35 customers for the whole morning. He knew 20 of them. How many new customers did he meet today ?
Read the problem carefully multiple times in order to understand it.
Farmer Joe had 35 customers for the whole morning. He knew 20 of them. How many new customers did he meet today ?
Read the problem carefully multiple times in order to understand it.
The budget for a school band was in 2010 . The budget decreased by from 2010 to 2011 and then increased by from 2011 to 2012 . Which of the following expressions represents the budget, in dollars, for the school band in 2012?
Note:
The concept of percentages can be a little tricky. But we just need to remember a few basic things to get going. This is the standard way of finding the value after increasing or decreasing a quantity by a certain percentage
The budget for a school band was in 2010 . The budget decreased by from 2010 to 2011 and then increased by from 2011 to 2012 . Which of the following expressions represents the budget, in dollars, for the school band in 2012?
Note:
The concept of percentages can be a little tricky. But we just need to remember a few basic things to get going. This is the standard way of finding the value after increasing or decreasing a quantity by a certain percentage