Physics-
General
Easy

Question

A disc of radius R is rolling purely on a flat horizontal surface, with a constant angular velocity. The angle between the velocity and acceleration vectors of point P is

  1. zero    
  2. 45°    
  3. 135°    
  4. tan–1(1/2)    

The correct answer is: 45°

Related Questions to study

General
physics-

A thin rod of length L is placed at angle theta to vertical on a frictionless horizontal floor and released. If the center of mass has acceleration = A, and the rod an angular acceleration = alpha at initial moment, then

A thin rod of length L is placed at angle theta to vertical on a frictionless horizontal floor and released. If the center of mass has acceleration = A, and the rod an angular acceleration = alpha at initial moment, then

physics-General
General
maths-

If f is a real-valued differentiable function satisfying vertical line f left parenthesis x right parenthesis minus f left parenthesis y right parenthesis vertical line less or equal than left parenthesis x minus y right parenthesis to the power of 2 end exponent comma x comma y element of R and f(0)=0, then f(1) equals

If f is a real-valued differentiable function satisfying vertical line f left parenthesis x right parenthesis minus f left parenthesis y right parenthesis vertical line less or equal than left parenthesis x minus y right parenthesis to the power of 2 end exponent comma x comma y element of R and f(0)=0, then f(1) equals

maths-General
General
maths-

If f(x) = open curly brackets table row cell fraction numerator x to the power of 2 end exponent minus 1 over denominator x to the power of 2 end exponent plus 1 end fraction end cell cell comma 0 less than x less or equal than 2 end cell row cell fraction numerator 1 over denominator 4 end fraction open parentheses x to the power of 3 end exponent minus x to the power of 2 end exponent close parentheses end cell cell comma 2 less than x less or equal than 3 end cell row cell fraction numerator 9 over denominator 4 end fraction left parenthesis vertical line x minus 4 vertical line plus vertical line 2 minus x vertical line right parenthesis comma end cell cell 3 less than x less than 4 end cell end table comma close then:

If f(x) = open curly brackets table row cell fraction numerator x to the power of 2 end exponent minus 1 over denominator x to the power of 2 end exponent plus 1 end fraction end cell cell comma 0 less than x less or equal than 2 end cell row cell fraction numerator 1 over denominator 4 end fraction open parentheses x to the power of 3 end exponent minus x to the power of 2 end exponent close parentheses end cell cell comma 2 less than x less or equal than 3 end cell row cell fraction numerator 9 over denominator 4 end fraction left parenthesis vertical line x minus 4 vertical line plus vertical line 2 minus x vertical line right parenthesis comma end cell cell 3 less than x less than 4 end cell end table comma close then:

maths-General
parallel
General
maths-

where represents the integral part function, then:

where represents the integral part function, then:

maths-General
General
maths-

Which of the following function(s) has/have removable discontinuity at

Which of the following function(s) has/have removable discontinuity at

maths-General
General
maths-

Consider the function f(x)=open square brackets table row cell x left curly bracket x right curly bracket plus 1 end cell cell 0 less or equal than x less than 1 end cell row cell 2 minus left curly bracket x right curly bracket end cell cell 1 less or equal than x less or equal than 2 end cell end table close where {x} denotes the fractional part function. Which one of the following statements is NOT correct?

Consider the function f(x)=open square brackets table row cell x left curly bracket x right curly bracket plus 1 end cell cell 0 less or equal than x less than 1 end cell row cell 2 minus left curly bracket x right curly bracket end cell cell 1 less or equal than x less or equal than 2 end cell end table close where {x} denotes the fractional part function. Which one of the following statements is NOT correct?

maths-General
parallel
General
maths-

Statement-I : If a subscript 1 end subscript comma a subscript 2 end subscript comma a subscript 3 end subscript comma horizontal ellipsis horizontal ellipsis a subscript n end subscript greater than 0, then l i m subscript x rightwards arrow infinity end subscript   open curly brackets fraction numerator a subscript 1 end subscript superscript 1 divided by x end superscript plus a subscript 2 end subscript superscript 1 divided by x end superscript plus a subscript 3 end subscript superscript 1 divided by x end superscript plus horizontal ellipsis.. plus a subscript n end subscript superscript 1 divided by x end superscript over denominator n end fraction close curly brackets to the power of n x end exponent equals product subscript i equals 1 end subscript superscript n end superscript   a subscript n end subscript

Statement-I : If a subscript 1 end subscript comma a subscript 2 end subscript comma a subscript 3 end subscript comma horizontal ellipsis horizontal ellipsis a subscript n end subscript greater than 0, then l i m subscript x rightwards arrow infinity end subscript   open curly brackets fraction numerator a subscript 1 end subscript superscript 1 divided by x end superscript plus a subscript 2 end subscript superscript 1 divided by x end superscript plus a subscript 3 end subscript superscript 1 divided by x end superscript plus horizontal ellipsis.. plus a subscript n end subscript superscript 1 divided by x end superscript over denominator n end fraction close curly brackets to the power of n x end exponent equals product subscript i equals 1 end subscript superscript n end superscript   a subscript n end subscript

maths-General
General
maths-

L i m subscript x rightwards arrow 0 end subscript invisible function application fraction numerator left parenthesis 1 minus c o s invisible function application 2 x right parenthesis left parenthesis 3 plus c o s invisible function application x right parenthesis over denominator x t a n invisible function application 4 x end fraction is equal to

L i m subscript x rightwards arrow 0 end subscript invisible function application fraction numerator left parenthesis 1 minus c o s invisible function application 2 x right parenthesis left parenthesis 3 plus c o s invisible function application x right parenthesis over denominator x t a n invisible function application 4 x end fraction is equal to

maths-General
General
maths-

l i m subscript s rightwards arrow pi divided by 2 end subscript   fraction numerator left square bracket 1 minus t a n invisible function application x divided by 2 right square bracket left square bracket 1 minus s i n invisible function application x right square bracket over denominator left square bracket 1 plus t a n invisible function application x divided by 2 right square bracket left square bracket pi minus 2 x right square bracket to the power of 3 end exponent end fraction is equal to-

l i m subscript s rightwards arrow pi divided by 2 end subscript   fraction numerator left square bracket 1 minus t a n invisible function application x divided by 2 right square bracket left square bracket 1 minus s i n invisible function application x right square bracket over denominator left square bracket 1 plus t a n invisible function application x divided by 2 right square bracket left square bracket pi minus 2 x right square bracket to the power of 3 end exponent end fraction is equal to-

maths-General
parallel
General
Maths-

Statement negative I colon The sum of the series 1+(1+2+4)+(4+6+9)+(9+12+16)+…+(361+380+400) is 8000.
Statement - II : sum subscript k equals 1 end subscript superscript n end superscript   open parentheses k to the power of 3 end exponent minus left parenthesis k minus 1 right parenthesis to the power of 3 end exponent close parentheses equals n to the power of 3 end exponent, for any natural number n.

Statement negative I colon The sum of the series 1+(1+2+4)+(4+6+9)+(9+12+16)+…+(361+380+400) is 8000.
Statement - II : sum subscript k equals 1 end subscript superscript n end superscript   open parentheses k to the power of 3 end exponent minus left parenthesis k minus 1 right parenthesis to the power of 3 end exponent close parentheses equals n to the power of 3 end exponent, for any natural number n.

Maths-General
General
Maths-

If in a frequently distribution, the mean and median are 21 and 22 respectively, then its mode is approximately.

If in a frequently distribution, the mean and median are 21 and 22 respectively, then its mode is approximately.

Maths-General
General
maths-

The negation of the statement "If I become a teacher, then I will open a school", is :

The negation of the statement "If I become a teacher, then I will open a school", is :

maths-General
parallel
General
Maths-

The value of the definite integral stretchy integral subscript 0 end subscript superscript 1 end superscript   open parentheses 1 plus e to the power of negative x to the power of 2 end exponent end exponent close parentheses d x is

So here we used the concept of integrals and simplified it. We can also solve it manually but it will take lot of time to come to final answer hence we used the minimum and maximum method which makes problem to solve easily. So the answer is non of these.

The value of the definite integral stretchy integral subscript 0 end subscript superscript 1 end superscript   open parentheses 1 plus e to the power of negative x to the power of 2 end exponent end exponent close parentheses d x is

Maths-General

So here we used the concept of integrals and simplified it. We can also solve it manually but it will take lot of time to come to final answer hence we used the minimum and maximum method which makes problem to solve easily. So the answer is non of these.

General
maths-

Suppos ef, f' andf'' are continuous on[0, e] and that f times x f times 1 equals 1 text  and  end text stretchy integral subscript 1 end subscript superscript c end superscript   fraction numerator f left parenthesis x right parenthesis over denominator x to the power of 2 end exponent end fraction d x equals fraction numerator 1 over denominator 2 end fraction then the value of stretchy integral subscript 1 end subscript superscript e end superscript   f to the power of ´ ´ end exponent left parenthesis x right parenthesis l n invisible function application x d x text  equals - end text

Suppos ef, f' andf'' are continuous on[0, e] and that f times x f times 1 equals 1 text  and  end text stretchy integral subscript 1 end subscript superscript c end superscript   fraction numerator f left parenthesis x right parenthesis over denominator x to the power of 2 end exponent end fraction d x equals fraction numerator 1 over denominator 2 end fraction then the value of stretchy integral subscript 1 end subscript superscript e end superscript   f to the power of ´ ´ end exponent left parenthesis x right parenthesis l n invisible function application x d x text  equals - end text

maths-General
General
maths-

I I subscript n end subscript equals stretchy integral subscript 0 end subscript superscript pi divided by 4 end superscript   t a n to the power of n end exponent invisible function application x d x text end textther text end text stack l i m with n rightwards arrow infinity below   blank subscript n end subscript I subscript n end subscript plus l subscript m end subscript 2 equals

I I subscript n end subscript equals stretchy integral subscript 0 end subscript superscript pi divided by 4 end superscript   t a n to the power of n end exponent invisible function application x d x text end textther text end text stack l i m with n rightwards arrow infinity below   blank subscript n end subscript I subscript n end subscript plus l subscript m end subscript 2 equals

maths-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.