Physics-
General
Easy

Question

A hollow sphere is released from the top of a wedge, friction is sufficient for pure rolling of sphere on the wedge. There is no friction between the wedge and the ground. Radius of sphere is R. At the instant it leaves the wedge horizontally. Velocity of centre of mass of sphere w.r.t. ground is-

  1. square root of fraction numerator 5 over denominator 7 end fraction g h end root    
  2. square root of 2 g h end root    
  3. square root of fraction numerator 3 over denominator 7 end fraction g h end root    
  4. square root of fraction numerator 11 over denominator 7 end fraction g h end root    

The correct answer is: square root of fraction numerator 3 over denominator 7 end fraction g h end root

Related Questions to study

General
physics-

A hollow sphere is released from the top of a wedge, friction is sufficient for pure rolling of sphere on the wedge. There is no friction between the wedge and the ground. Radius of sphere is R. At the instant it leaves the wedge horizontally. Angular velocity of sphere omega is

A hollow sphere is released from the top of a wedge, friction is sufficient for pure rolling of sphere on the wedge. There is no friction between the wedge and the ground. Radius of sphere is R. At the instant it leaves the wedge horizontally. Angular velocity of sphere omega is

physics-General
General
physics-

A uniform hollow sphere is released from the top of a fixed inclined plane of inclination 37 to the power of ring operator end exponent and height 3m. It rolls without sliding. The time taken by the sphere to reach the bottom is

A uniform hollow sphere is released from the top of a fixed inclined plane of inclination 37 to the power of ring operator end exponent and height 3m. It rolls without sliding. The time taken by the sphere to reach the bottom is

physics-General
General
physics-

A uniform hollow sphere is released from the top of a fixed inclined plane of inclination 37 to the power of ring operator end exponent and height 3m. It rolls without sliding. The speed of the point of contact of the sphere with the inclined plane when the sphere reaches half–way of the incline is

A uniform hollow sphere is released from the top of a fixed inclined plane of inclination 37 to the power of ring operator end exponent and height 3m. It rolls without sliding. The speed of the point of contact of the sphere with the inclined plane when the sphere reaches half–way of the incline is

physics-General
parallel
General
physics-

A uniform hollow sphere is released from the top of a fixed inclined plane of inclination 37 to the power of ring operator end exponent and height 3m. It rolls without sliding. The acceleration of the centre of mass of the hollow sphere is

A uniform hollow sphere is released from the top of a fixed inclined plane of inclination 37 to the power of ring operator end exponent and height 3m. It rolls without sliding. The acceleration of the centre of mass of the hollow sphere is

physics-General
General
physics-

A mouse, searching for food, jumped onto the rim of a stationary circular disk mounted on a vertical axle. The disk is free to rotate without friction. The velocity of the mouse was tangent to the edge of the disk before it landed. When the mouse landed, it gripped the surface, remained fixed on the outer edge of the disk at a distance R from the center, and set it into rotation. The sketch indicates the situation The mass of the mouse is m = 0.10 kg, the radius of the disk is R = 0.20 m, and the rotational inertia of the disk is I = 0.0080 kg·m to the power of 2 end exponent. The speed of the mouse, just before it landed on the disk is V subscript O end subscript = 1.5 m/s. The mouse, still searching for food, crept to the center of the disk (where r = 0). Find angular velocity of the disk plus mouse, when the mouse was at the center of the disk.

A mouse, searching for food, jumped onto the rim of a stationary circular disk mounted on a vertical axle. The disk is free to rotate without friction. The velocity of the mouse was tangent to the edge of the disk before it landed. When the mouse landed, it gripped the surface, remained fixed on the outer edge of the disk at a distance R from the center, and set it into rotation. The sketch indicates the situation The mass of the mouse is m = 0.10 kg, the radius of the disk is R = 0.20 m, and the rotational inertia of the disk is I = 0.0080 kg·m to the power of 2 end exponent. The speed of the mouse, just before it landed on the disk is V subscript O end subscript = 1.5 m/s. The mouse, still searching for food, crept to the center of the disk (where r = 0). Find angular velocity of the disk plus mouse, when the mouse was at the center of the disk.

physics-General
General
physics-

A mouse, searching for food, jumped onto the rim of a stationary circular disk mounted on a vertical axle. The disk is free to rotate without friction. The velocity of the mouse was tangent to the edge of the disk before it landed. When the mouse landed, it gripped the surface, remained fixed on the outer edge of the disk at a distance R from the center, and set it into rotation. The sketch indicates the situation The mass of the mouse is m = 0.10 kg, the radius of the disk is R = 0.20 m, and the rotational inertia of the disk is I = 0.0080 kg·m to the power of 2 end exponentThe speed of the mouse, just before it landed on the disk is V subscript O end subscript = 1.5 m/s. Find the magnitude of the impulse received by the mouse as it landed on the disk.

A mouse, searching for food, jumped onto the rim of a stationary circular disk mounted on a vertical axle. The disk is free to rotate without friction. The velocity of the mouse was tangent to the edge of the disk before it landed. When the mouse landed, it gripped the surface, remained fixed on the outer edge of the disk at a distance R from the center, and set it into rotation. The sketch indicates the situation The mass of the mouse is m = 0.10 kg, the radius of the disk is R = 0.20 m, and the rotational inertia of the disk is I = 0.0080 kg·m to the power of 2 end exponentThe speed of the mouse, just before it landed on the disk is V subscript O end subscript = 1.5 m/s. Find the magnitude of the impulse received by the mouse as it landed on the disk.

physics-General
parallel
General
physics-

A mouse, searching for food, jumped onto the rim of a stationary circular disk mounted on a vertical axle. The disk is free to rotate without friction. The velocity of the mouse was tangent to the edge of the disk before it landed. When the mouse landed, it gripped the surface, remained fixed on the outer edge of the disk at a distance R from the center, and set it into rotation. The sketch indicates the situation The mass of the mouse is m = 0.10 kg, the radius of the disk is R = 0.20 m, and the rotational inertia of the disk is I = 0.0080 kg· m to the power of 2 end exponentThe speed of the mouse, just before it landed on the disk is V subscript O end subscript = 1.5 m/s. Magnitude of the angular velocity of the disk plus mouse, after it landed becomes

A mouse, searching for food, jumped onto the rim of a stationary circular disk mounted on a vertical axle. The disk is free to rotate without friction. The velocity of the mouse was tangent to the edge of the disk before it landed. When the mouse landed, it gripped the surface, remained fixed on the outer edge of the disk at a distance R from the center, and set it into rotation. The sketch indicates the situation The mass of the mouse is m = 0.10 kg, the radius of the disk is R = 0.20 m, and the rotational inertia of the disk is I = 0.0080 kg· m to the power of 2 end exponentThe speed of the mouse, just before it landed on the disk is V subscript O end subscript = 1.5 m/s. Magnitude of the angular velocity of the disk plus mouse, after it landed becomes

physics-General
General
maths-

If AB makes 90º angle at the vertex of parabola then -

If AB makes 90º angle at the vertex of parabola then -

maths-General
General
maths-

The ends of a line segments are P (1, 3) and Q (1, 1). R is a point on the line segment PQ such that PR : QR = 1 : λ. If R is an interior point of the parabola y2 = 4x then -

The ends of a line segments are P (1, 3) and Q (1, 1). R is a point on the line segment PQ such that PR : QR = 1 : λ. If R is an interior point of the parabola y2 = 4x then -

maths-General
parallel
General
maths-

The circle x2 + y2 + 2λx = 0, λ element of R touches the parabola y2 = 4x externally, then -

The circle x2 + y2 + 2λx = 0, λ element of R touches the parabola y2 = 4x externally, then -

maths-General
General
maths-

If b and c are the length of the segments of and focal chord of a parabola y2 = 4ax. Then the length of the semi-latus rectum is -

If b and c are the length of the segments of and focal chord of a parabola y2 = 4ax. Then the length of the semi-latus rectum is -

maths-General
General
maths-

A parabola is drawn with its focus (3, 4) and vertex at the focus of the parabola y2 – 12 x – 4y + 4 = 0. The equation of the parabola is -

A parabola is drawn with its focus (3, 4) and vertex at the focus of the parabola y2 – 12 x – 4y + 4 = 0. The equation of the parabola is -

maths-General
parallel
General
maths-

The range of values of λ for which the point (λ, – 1) is exterior to both the parabola y2 = |x| is -

The range of values of λ for which the point (λ, – 1) is exterior to both the parabola y2 = |x| is -

maths-General
General
maths-

The value of P such that the vertex of y = x2 + 2px + 13 is 4 unit above the x axis is -

The value of P such that the vertex of y = x2 + 2px + 13 is 4 unit above the x axis is -

maths-General
General
physics-

In the figure, the blocks have unequal masses m subscript 1 end subscript and m subscript 2 end subscript open parentheses m subscript 1 end subscript greater than m subscript 2 end subscript close parentheses. m subscript 1 end subscript has a downward acceleration a. The pulley P has a radius r, and some mass. The string does not slip on the pulley–

In the figure, the blocks have unequal masses m subscript 1 end subscript and m subscript 2 end subscript open parentheses m subscript 1 end subscript greater than m subscript 2 end subscript close parentheses. m subscript 1 end subscript has a downward acceleration a. The pulley P has a radius r, and some mass. The string does not slip on the pulley–

physics-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.