Physics-
General
Easy
Question
A particle starts from rest at a distance R from the centre and along the axis of a fixed ring of radius R & mass M. Its velocity at the centre of the ring is:
The correct answer is:
Related Questions to study
physics-
Two identical spherical balls each of mass m are placed as shown in figure. Plot the variation of g (gravitation intensity) along the x-axis.
Two identical spherical balls each of mass m are placed as shown in figure. Plot the variation of g (gravitation intensity) along the x-axis.
physics-General
physics-
A particle of mass M is at a distance a from surface of a thin spherical shell of equal mass and having radius a.
A particle of mass M is at a distance a from surface of a thin spherical shell of equal mass and having radius a.
physics-General
physics-
A solid sphere of uniform density and radius R applies a gravitational force of attraction equal to F1 on a particle placed at a distance 3R from the centre of the sphere. A spherical cavity of radius R/2 is now made in the sphere as shown in the figure. The sphere with cavity now applies a gravitational force F2 on the same particle. The ratio F2/F1 is:
A solid sphere of uniform density and radius R applies a gravitational force of attraction equal to F1 on a particle placed at a distance 3R from the centre of the sphere. A spherical cavity of radius R/2 is now made in the sphere as shown in the figure. The sphere with cavity now applies a gravitational force F2 on the same particle. The ratio F2/F1 is:
physics-General
physics-
Find the distance between centre of gravity and centre of mass of a two particle system attached to the ends of a light rod. Each particle has same mass. Length of the rod is R, where R is the radius of earth
Find the distance between centre of gravity and centre of mass of a two particle system attached to the ends of a light rod. Each particle has same mass. Length of the rod is R, where R is the radius of earth
physics-General
physics-
Two concentric shells of uniform density of mass M1 and M2 are situated as shown in the figure. The forces experienced by a particle of mass m when placed at positions A, B and C respectively are (given OA = p, OB = q and OC = r)
Two concentric shells of uniform density of mass M1 and M2 are situated as shown in the figure. The forces experienced by a particle of mass m when placed at positions A, B and C respectively are (given OA = p, OB = q and OC = r)
physics-General
physics-
A spherical hole of radius R/2 is excavated from the asteroid of mass M as shown in fig. The gravitational acceleration at a point on the surface of the asteroid just above the excavation is
A spherical hole of radius R/2 is excavated from the asteroid of mass M as shown in fig. The gravitational acceleration at a point on the surface of the asteroid just above the excavation is
physics-General
physics-
A steady flow of water passes along a horizontal tube from a wide section X to the narrower section Y, see figure. Manometers are placed at P and Q at the sections. Which of the statements A, B, C, D, E is most correct?
A steady flow of water passes along a horizontal tube from a wide section X to the narrower section Y, see figure. Manometers are placed at P and Q at the sections. Which of the statements A, B, C, D, E is most correct?
physics-General
physics-
A cylindrical vessel is filled with a liquid up to height H. A small hole is made in the vessel at a distance y below the liquid surface as shown in figure. The liquid emerging from the hole strike the ground at distance x
A cylindrical vessel is filled with a liquid up to height H. A small hole is made in the vessel at a distance y below the liquid surface as shown in figure. The liquid emerging from the hole strike the ground at distance x
physics-General
physics-
Figure shows a siphon. Choose the wrong statement:
Figure shows a siphon. Choose the wrong statement:
physics-General
physics-
The vessel shown in the figure has two sections. The lower part is a rectangular vessel with area of cross-section A and height h. The upper part is a conical vessel of height h with base area ‘A’ and top area ‘a’ and the walls of the vessel are inclined at an angle 30° with the vertical. A liquid of density r fills both the sections upto a height 2h. Neglecting atmospheric pressure.
The vessel shown in the figure has two sections. The lower part is a rectangular vessel with area of cross-section A and height h. The upper part is a conical vessel of height h with base area ‘A’ and top area ‘a’ and the walls of the vessel are inclined at an angle 30° with the vertical. A liquid of density r fills both the sections upto a height 2h. Neglecting atmospheric pressure.
physics-General
physics-
A soap bubble has radius R and thickness d (<< R) as shown. It colapses into a spherical drop. The ratio of excess pressure in the drop to the excess pressure inside the bubble is
A soap bubble has radius R and thickness d (<< R) as shown. It colapses into a spherical drop. The ratio of excess pressure in the drop to the excess pressure inside the bubble is
physics-General
physics-
A liquid is filled in a spherical container of radius R till a height h. At this positions the liquid surface at the edges is also horizontal. The contact angle is
A liquid is filled in a spherical container of radius R till a height h. At this positions the liquid surface at the edges is also horizontal. The contact angle is
physics-General
physics-
Which of the following is the incorrect graph for a sphere falling in a viscous liquid? (Given at t = 0, velocity v = 0 and displacement x = 0.)
Which of the following is the incorrect graph for a sphere falling in a viscous liquid? (Given at t = 0, velocity v = 0 and displacement x = 0.)
physics-General
physics-
A spherical ball of density r and radius 0.003m is dropped into a tube containing a viscous fluid filled up to the 0 cm mark as shown in the figure. Viscosity of the fluid = 1.260 Nm–2 and its density rL= r/2 = 1260 kgm–3. Assume the ball reaches a terminal speed by the 10 cm mark. The time taken by the ball to traverse the distance between the 10 cm and 20 cm mark is (g = acceleration due to gravity = 10 ms–2)
A spherical ball of density r and radius 0.003m is dropped into a tube containing a viscous fluid filled up to the 0 cm mark as shown in the figure. Viscosity of the fluid = 1.260 Nm–2 and its density rL= r/2 = 1260 kgm–3. Assume the ball reaches a terminal speed by the 10 cm mark. The time taken by the ball to traverse the distance between the 10 cm and 20 cm mark is (g = acceleration due to gravity = 10 ms–2)
physics-General
physics-
A cubical block of side ‘a’ and density ‘’ slides over a fixed inclined plane with constant velocity ‘v’. There is a thin film of viscous fluid of thickness ‘t’ between the plane and the block. Then the coefficient of viscosity of the thin film will be:
A cubical block of side ‘a’ and density ‘’ slides over a fixed inclined plane with constant velocity ‘v’. There is a thin film of viscous fluid of thickness ‘t’ between the plane and the block. Then the coefficient of viscosity of the thin film will be:
physics-General