Physics-
General
Easy
Question
A ring of mass M and radius R sliding with a velocity v0 suddenly enters rough surface where the coefficient of friction is , as shown in figure. Choose the correct statement(s)
- As the ring enters on the rough surface, the limiting friction force acts on it
- The direction of friction is opposite to the direction of motion
- The friction force accelerates the ring in the clockwise sense about its centre of mass
- As the ring enters on the rough surface it starts rolling
The correct answer is: As the ring enters on the rough surface, the limiting friction force acts on it
Related Questions to study
physics-
In the figure shown, the plank is being pulled to the right with a constant speed v. If the cylinder does not slip then
In the figure shown, the plank is being pulled to the right with a constant speed v. If the cylinder does not slip then
physics-General
physics-
A hollow sphere of radius R and mass m is fully filled with water of mass m. It is rolled down a horizontal plane such that its centre of mass moves with a velocity v. If it purely rolls
A hollow sphere of radius R and mass m is fully filled with water of mass m. It is rolled down a horizontal plane such that its centre of mass moves with a velocity v. If it purely rolls
physics-General
physics-
A plank with a uniform sphere placed on it, rests on a smooth horizontal plane. Plank is pulled to right by a constant force F. If the sphere does not slip over the plank
A plank with a uniform sphere placed on it, rests on a smooth horizontal plane. Plank is pulled to right by a constant force F. If the sphere does not slip over the plank
physics-General
physics-
A disc of circumference s is at rest at a point A on a horizontal surface when a constant horizontal force begins to act on its centre. Between A and B there is sufficient friction to prevent slipping, and the surface is smooth to the right of B. AB = s. The disc moves from A to B in time T. To the right of B
A disc of circumference s is at rest at a point A on a horizontal surface when a constant horizontal force begins to act on its centre. Between A and B there is sufficient friction to prevent slipping, and the surface is smooth to the right of B. AB = s. The disc moves from A to B in time T. To the right of B
physics-General
physics-
Four point masses are fastened to the corners of a frame of negligible mass lying in the xy plane. Let w be the angular speed of rotation. Then
Four point masses are fastened to the corners of a frame of negligible mass lying in the xy plane. Let w be the angular speed of rotation. Then
physics-General
physics-
A body is in equilibrium under the influence of a number of forces. Each force has a different line of action. The minimum number of forces required is
A body is in equilibrium under the influence of a number of forces. Each force has a different line of action. The minimum number of forces required is
physics-General
physics-
ABCD is a square plate with centre O. The moments of inertia of the plate about the perpendicular axis through O is I and about the axes 1, 2, 3 & 4 are respectively. It follows that
ABCD is a square plate with centre O. The moments of inertia of the plate about the perpendicular axis through O is I and about the axes 1, 2, 3 & 4 are respectively. It follows that
physics-General
physics-
A uniform rod of mass M is hinged at its upper end. A particle of mass m moving horizontally strikes the rod at its mid point elastically. If the particle comes to rest after collision find the value of M/m =?
A uniform rod of mass M is hinged at its upper end. A particle of mass m moving horizontally strikes the rod at its mid point elastically. If the particle comes to rest after collision find the value of M/m =?
physics-General
physics-
A uniform rod AB of length L and mass M is lying on a smooth table. A small particle of mass m strike the rod with a velocity v0 at point C a distance x from the centre O. The particle comes to rest after collision. The value of x, so that point A of the rod remains stationary just after collision, is :
A uniform rod AB of length L and mass M is lying on a smooth table. A small particle of mass m strike the rod with a velocity v0 at point C a distance x from the centre O. The particle comes to rest after collision. The value of x, so that point A of the rod remains stationary just after collision, is :
physics-General
physics-
Two particles of equal mass m at A and B are connected by a rigid light rod AB lying on a smooth horizontal table. An impulse J is applied at A in the plane of the table and perpendicular at AB. Then the velocity of particle at A is
Two particles of equal mass m at A and B are connected by a rigid light rod AB lying on a smooth horizontal table. An impulse J is applied at A in the plane of the table and perpendicular at AB. Then the velocity of particle at A is
physics-General
physics-
A uniform rod AB of length L and mass M is lying on a smooth table. A small particle of mass m strike the rod with a velocity v0 at point C at a distance x from the centre O. The particle comes to rest after collision. The value of x, so that point A of the rod remains stationary just after collision is:
A uniform rod AB of length L and mass M is lying on a smooth table. A small particle of mass m strike the rod with a velocity v0 at point C at a distance x from the centre O. The particle comes to rest after collision. The value of x, so that point A of the rod remains stationary just after collision is:
physics-General
physics-
A ball of mass m moving with velocity v, collide with the wall elastically as shown in the figure. After impact the change in angular momentum about P is:
A ball of mass m moving with velocity v, collide with the wall elastically as shown in the figure. After impact the change in angular momentum about P is:
physics-General
physics-
A thin uniform straight rod of mass 2 kg and length 1 m is free to rotate about its upper end when at rest. It receives an impulsive blow of 10 Ns at its lowest point, normal to its length as shown in figure. The kinetic energy of rod just after impact is
A thin uniform straight rod of mass 2 kg and length 1 m is free to rotate about its upper end when at rest. It receives an impulsive blow of 10 Ns at its lowest point, normal to its length as shown in figure. The kinetic energy of rod just after impact is
physics-General
physics-
Two equal masses each of mass M are joined by a massless rod of length L. Now an impulse MV is given to the mass M making an angle of 30° with the length of the rod. The angular velocity of the rod just after imparting the impulse is
Two equal masses each of mass M are joined by a massless rod of length L. Now an impulse MV is given to the mass M making an angle of 30° with the length of the rod. The angular velocity of the rod just after imparting the impulse is
physics-General
physics-
In the figure shown a ring A is initially rolling without sliding with a velocity v on the horizontal surface of the body B (of same mass as A). All surfaces are smooth. B has no initial velocity. What will be the maximum height reached by A on B
In the figure shown a ring A is initially rolling without sliding with a velocity v on the horizontal surface of the body B (of same mass as A). All surfaces are smooth. B has no initial velocity. What will be the maximum height reached by A on B
physics-General