Physics-
General
Easy

Question

A small ball falling vertically downward with constant velocity 4m/s strikes elastically a massive inclined cart moving with velocity 4m/s horizontally as shown. The velocity of the rebound of the ball is

  1. 4 square root of 2 m divided by s    
  2. 4 square root of 3 m divided by s    
  3. 4m/s    
  4. 4 square root of 5 m divided by s    

The correct answer is: 4 square root of 5 m divided by s

Related Questions to study

General
physics-

A ball of mass m falls vertically from a height h and collides with a block of equal mass m moving horizontally with a velocity v on a surface. The coefficient of kinetic friction between the block and the surface is 0.2, while the coefficient of restitution e between the ball and the block is 0.5. There is no friction acting between the ball and the block. The velocity of the block decreases by

A ball of mass m falls vertically from a height h and collides with a block of equal mass m moving horizontally with a velocity v on a surface. The coefficient of kinetic friction between the block and the surface is 0.2, while the coefficient of restitution e between the ball and the block is 0.5. There is no friction acting between the ball and the block. The velocity of the block decreases by

physics-General
General
physics-

Two masses A and B of mass M and 2M respectively are connected by a compressed ideal spring. The system is placed on a horizontal frictionless table and given a velocity ustack k with hat on top in the z-direction as shown in the figure. The spring is then released. In the subsequent motion the line from B to A always points along the stack i with hat on top unit vector. At some instant of time mass B has a x-component of velocity as V subscript x end subscript stack i with hat on top. The velocity stack V with rightwards arrow on top subscript A end subscript of as A at that instant is

Two masses A and B of mass M and 2M respectively are connected by a compressed ideal spring. The system is placed on a horizontal frictionless table and given a velocity ustack k with hat on top in the z-direction as shown in the figure. The spring is then released. In the subsequent motion the line from B to A always points along the stack i with hat on top unit vector. At some instant of time mass B has a x-component of velocity as V subscript x end subscript stack i with hat on top. The velocity stack V with rightwards arrow on top subscript A end subscript of as A at that instant is

physics-General
General
physics-

On a smooth horizontal plane, a uniform string of mass M and length is lying in the state of rest. A man of the same mass M is standing next to one end of the string. Now, the man starts collecting the string. Finally the man collects all the string and puts it in his pocket. What is the displacement of the man with respect to earth in the process of collection?

On a smooth horizontal plane, a uniform string of mass M and length is lying in the state of rest. A man of the same mass M is standing next to one end of the string. Now, the man starts collecting the string. Finally the man collects all the string and puts it in his pocket. What is the displacement of the man with respect to earth in the process of collection?

physics-General
parallel
General
physics-

In a smooth stationary cart of length d, a small block is projected along it's length with velocity v towards front. Coefficient of restitution for each collision is e. The cart rests on a smooth ground and can move freely. The time taken by block to come to rest w.r.t. cart is

In a smooth stationary cart of length d, a small block is projected along it's length with velocity v towards front. Coefficient of restitution for each collision is e. The cart rests on a smooth ground and can move freely. The time taken by block to come to rest w.r.t. cart is

physics-General
General
physics-

In the diagram shown, no friction at any contact surface. Initially, the spring has no deformation. What will be the maximum deformation in the spring? Consider all the strings to be sufficiency large. Consider the spring constant to be K

In the diagram shown, no friction at any contact surface. Initially, the spring has no deformation. What will be the maximum deformation in the spring? Consider all the strings to be sufficiency large. Consider the spring constant to be K

physics-General
General
physics-

The inclined surfaces of two movable wedges of same mass M are smoothly conjugated with the horizontal plane as shown in figure. A washer of mass m slides down the left wedge from a height h. To what maximum height will the washer rise along the right wedge? Neglect friction

The inclined surfaces of two movable wedges of same mass M are smoothly conjugated with the horizontal plane as shown in figure. A washer of mass m slides down the left wedge from a height h. To what maximum height will the washer rise along the right wedge? Neglect friction

physics-General
parallel
General
physics-

Centre of mass of two thin uniform rods of same length but made up of different materials & kept as shown , can be, if the meeting point is the origin of co-ordinates

Centre of mass of two thin uniform rods of same length but made up of different materials & kept as shown , can be, if the meeting point is the origin of co-ordinates

physics-General
General
physics-

In the figure (i), (ii) & (iii) shown the objects A, B & C are of same mass. String, spring & pulley are massless. C strikes B with velocity ‘u’ in each case and sticks to it. The ratio of velocity of B in case (i) to (ii) to (iii) is

In the figure (i), (ii) & (iii) shown the objects A, B & C are of same mass. String, spring & pulley are massless. C strikes B with velocity ‘u’ in each case and sticks to it. The ratio of velocity of B in case (i) to (ii) to (iii) is

physics-General
General
physics-

A hemisphere of mass 3m and radius R is free to slide with its base on a smooth horizontal table. A particle of mass m is placed on the top of the hemisphere. If particle is displaced with a negligible velocity, then find the angular velocity of the particle relative to the centre of the hemisphere at an angular displacement q, when velocity of hemisphere is v

A hemisphere of mass 3m and radius R is free to slide with its base on a smooth horizontal table. A particle of mass m is placed on the top of the hemisphere. If particle is displaced with a negligible velocity, then find the angular velocity of the particle relative to the centre of the hemisphere at an angular displacement q, when velocity of hemisphere is v

physics-General
parallel
General
Physics-

In the figure shown, the two identical balls of mass M and radius R each, are placed in contact with each other on the frictionless horizontal surface. The third ball of mass M and radius R over 2, is coming down vertically and has a velocity = v0 when it simultaneously hits the two balls and itself comes to rest. Then, each of the two bigger balls will move after collision with a speed equal to

In the figure shown, the two identical balls of mass M and radius R each, are placed in contact with each other on the frictionless horizontal surface. The third ball of mass M and radius R over 2, is coming down vertically and has a velocity = v0 when it simultaneously hits the two balls and itself comes to rest. Then, each of the two bigger balls will move after collision with a speed equal to

Physics-General
General
physics-

A billiard table whose length and width are as shown in the figure. A ball is placed at point A. At what angle ‘q’ the ball be projected so that after colliding with two walls, the ball will fall in the pocket B. Assume that all collisions are perfectly elastic (neglect friction)

A billiard table whose length and width are as shown in the figure. A ball is placed at point A. At what angle ‘q’ the ball be projected so that after colliding with two walls, the ball will fall in the pocket B. Assume that all collisions are perfectly elastic (neglect friction)

physics-General
General
physics-

In the figure one fourth part of a uniform disc of radius R is shown. The distance of the centre of mass of this object from centre ‘O’ is

In the figure one fourth part of a uniform disc of radius R is shown. The distance of the centre of mass of this object from centre ‘O’ is

physics-General
parallel
General
physics-

In the figure shown a hole of radius 2 cm is made in a semicircular disc of radius 6p at a distance 8 cm from the centre C of the disc. The distance of the centre of mass of this system from point C is :

In the figure shown a hole of radius 2 cm is made in a semicircular disc of radius 6p at a distance 8 cm from the centre C of the disc. The distance of the centre of mass of this system from point C is :

physics-General
General
physics-

A uniform chain of length 2L is hanging in equilibrium position, if end B is given a slightly downward displacement the imbalance causes an acceleration. Here pulley is small and smooth & string is inextensible The acceleration of end B when it has been displaced by distance x, is

A uniform chain of length 2L is hanging in equilibrium position, if end B is given a slightly downward displacement the imbalance causes an acceleration. Here pulley is small and smooth & string is inextensible The acceleration of end B when it has been displaced by distance x, is

physics-General
General
physics-

From a uniform disc of radius R, an equilateral triangle of side square root of 3 R is cut as shown. The new position of centre of mass is :

From a uniform disc of radius R, an equilateral triangle of side square root of 3 R is cut as shown. The new position of centre of mass is :

physics-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.