Physics-
General
Easy

Question

A square plate of mass M and edge L is shown in figure. The moment of inertia of the plate about the axis in the plane of plate passing through one of its vertex making an angle 15° from horizontal is.

  1. fraction numerator M L to the power of 2 end exponent over denominator 12 end fraction    
  2. fraction numerator 11 M L to the power of 2 end exponent over denominator 24 end fraction    
  3. fraction numerator 7 M L to the power of 2 end exponent over denominator 12 end fraction    
  4. none    

The correct answer is: fraction numerator 11 M L to the power of 2 end exponent over denominator 24 end fraction

Related Questions to study

General
physics-

Moment of inertia of a semicircular ring of radius R and mass M ; about an axis passing through A and perpendicular to the plane of the paper is

Moment of inertia of a semicircular ring of radius R and mass M ; about an axis passing through A and perpendicular to the plane of the paper is

physics-General
General
physics-

Moment of inertia of a thin semicircular disc (mass = M & radius = R) about an axis through point O and perpendicular to plane of disc, is given by :

Moment of inertia of a thin semicircular disc (mass = M & radius = R) about an axis through point O and perpendicular to plane of disc, is given by :

physics-General
General
physics-

In the triangular sheet given PQ = QR = l. If M is the mass of the sheet. What is the moment of inertial about PR

In the triangular sheet given PQ = QR = l. If M is the mass of the sheet. What is the moment of inertial about PR

physics-General
parallel
General
physics-

The moment of inertia of semicircular plate of radius R and mass M about axis AA’ in its plane passing through its centre is

The moment of inertia of semicircular plate of radius R and mass M about axis AA’ in its plane passing through its centre is

physics-General
General
Physics-

A thin uniform rod of mass M and length L has its moment of inertia I1 about its perpendicular bisector. The rod is bend in the form of a semicircular arc. Now its moment of inertia through the centre of the semi circular arc and perpendicular to its plane is I2 . The ratio of I1 : I2 will be _______

A thin uniform rod of mass M and length L has its moment of inertia I1 about its perpendicular bisector. The rod is bend in the form of a semicircular arc. Now its moment of inertia through the centre of the semi circular arc and perpendicular to its plane is I2 . The ratio of I1 : I2 will be _______

Physics-General
General
physics-

Let I1 , I2 and I3 be the moment of inertia of a uniform square plate about axes AOC, xDx' and yBy' respectively as shown in the figure. The moments of inertia of the plate I1 : I2 : I3 are in the ratio.

Let I1 , I2 and I3 be the moment of inertia of a uniform square plate about axes AOC, xDx' and yBy' respectively as shown in the figure. The moments of inertia of the plate I1 : I2 : I3 are in the ratio.

physics-General
parallel
General
physics-

Moment of inertia of a rectangular plate about an axis passing through P and perpendicular to the plate is I. Then moment of PQR about an axis perpendicular to the plane of the plate:

Moment of inertia of a rectangular plate about an axis passing through P and perpendicular to the plate is I. Then moment of PQR about an axis perpendicular to the plane of the plate:

physics-General
General
physics-

Find the moment of inertia of a plate cut in shape of a right angled triangle of mass M, side AC = BC = a about an axis perpendicular to the plane of the plate and passing through the mid point of side AB

Find the moment of inertia of a plate cut in shape of a right angled triangle of mass M, side AC = BC = a about an axis perpendicular to the plane of the plate and passing through the mid point of side AB

physics-General
General
physics-

A point mass mA is connected to a point mass mB by a massless rod of length l as shown in the figure. It is observed that the ratio of the moment of inertia of the system about the two axes BB and AA, which is parallel to each other and perpendicular to the rod is fraction numerator I subscript B B end subscript over denominator I subscript A A end subscript end fraction equals 3.The distance of the centre of mass of the system from the mass A is

A point mass mA is connected to a point mass mB by a massless rod of length l as shown in the figure. It is observed that the ratio of the moment of inertia of the system about the two axes BB and AA, which is parallel to each other and perpendicular to the rod is fraction numerator I subscript B B end subscript over denominator I subscript A A end subscript end fraction equals 3.The distance of the centre of mass of the system from the mass A is

physics-General
parallel
General
Physics-

Identify the correct statement(s) related to the situation when the particle starts moving downward.

Identify the correct statement(s) related to the situation when the particle starts moving downward.

Physics-General
General
physics-

A particle of mass m moving horizontally with v0 strikes a smooth wedge of mass M, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to a height h.

The maximum height h attained by the particle is

A particle of mass m moving horizontally with v0 strikes a smooth wedge of mass M, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to a height h.

The maximum height h attained by the particle is

physics-General
General
physics-

A particle of mass m moving horizontally with v0 strikes a smooth wedge of mass M, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to a height h.

The final velocity of the wedge v2 is

A particle of mass m moving horizontally with v0 strikes a smooth wedge of mass M, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to a height h.

The final velocity of the wedge v2 is

physics-General
parallel
General
physics-

A small particle of mass m is given an initial high velocity in the horizontal plane and winds its cord around the fixed vertical shaft of radius a. All motion occurs essentially in horizontal plane. If the angular velocity of the cord is omega subscript 0 end subscript when the distance from the particle to the tangency point is r0 , then the angular velocity of the cord omega after it has turned through an angle theta is

A small particle of mass m is given an initial high velocity in the horizontal plane and winds its cord around the fixed vertical shaft of radius a. All motion occurs essentially in horizontal plane. If the angular velocity of the cord is omega subscript 0 end subscript when the distance from the particle to the tangency point is r0 , then the angular velocity of the cord omega after it has turned through an angle theta is

physics-General
General
physics-

A box of mass m is released from rest at position 1 on the frictionless curved track shown. It slides a distance d along the track in time t to reach position 2, dropping a vertical distance h. Let v and a be the instantaneous speed and instantaneous acceleration, respectively, of the box at position 2. Which of the following equations is valid for this situation?

A box of mass m is released from rest at position 1 on the frictionless curved track shown. It slides a distance d along the track in time t to reach position 2, dropping a vertical distance h. Let v and a be the instantaneous speed and instantaneous acceleration, respectively, of the box at position 2. Which of the following equations is valid for this situation?

physics-General
General
physics-

Consider a special situation in which both the faces of the block M0 are smooth, as shown in adjoining figure. Mark out the correct statement(s)

In above problem, the value(s) of F for which M and m are stationary with respect to M0

Consider a special situation in which both the faces of the block M0 are smooth, as shown in adjoining figure. Mark out the correct statement(s)

In above problem, the value(s) of F for which M and m are stationary with respect to M0

physics-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.