Physics-
General
Easy

Question

A string of length L is fixed at one end and carries a mass M at the other end. The string makes 2 divided by pi revolutions per s e c o n d around the vertical axis through the fixed end as shown in figure, then tension in the string is

  1. M L    
  2. 2 blank M L    
  3. 4 blank M L    
  4. 16 blank M L    

The correct answer is: 16 blank M L


    T sin invisible function application theta equals M omega to the power of 2 end exponent R(i)
    T sin invisible function application theta equals M omega to the power of 2 end exponent L sin invisible function application theta(ii)
    From (i) and (ii)
    T equals M omega to the power of 2 end exponent L
    equals M blank 4 pi to the power of 2 end exponent n to the power of 2 end exponent L
    equals M blank 4 pi to the power of 2 end exponent open parentheses fraction numerator 2 over denominator pi end fraction close parentheses to the power of 2 end exponent L equals 16 blank M L

    Related Questions to study

    General
    maths-

    cos invisible function application left parenthesis alpha minus beta right parenthesis equals 1 text  and  end text cos invisible function application left parenthesis alpha plus beta right parenthesis equals 1 over c where alpha comma beta element of left square bracket negative pi comma pi right square bracket Pairs alpha comma beta which satisfy both the equations is/are

    cos invisible function application left parenthesis alpha minus beta right parenthesis equals 1 text  and  end text cos invisible function application left parenthesis alpha plus beta right parenthesis equals 1 over c where alpha comma beta element of left square bracket negative pi comma pi right square bracket Pairs alpha comma beta which satisfy both the equations is/are

    maths-General
    General
    maths-

    The number of integral values of k for which the equation 7 cos invisible function application x plus 5 sin invisible function application x equals 2 k plus 1 has a solution is

    The number of integral values of k for which the equation 7 cos invisible function application x plus 5 sin invisible function application x equals 2 k plus 1 has a solution is

    maths-General
    General
    maths-

    The number of distinct real roots of open vertical bar table attributes columnalign center center center columnspacing 1em end attributes row cell sin invisible function application x end cell cell cos invisible function application x end cell cell cos invisible function application x end cell row cell cos invisible function application x end cell cell sin invisible function application x end cell cell cos invisible function application x end cell row cell cos invisible function application x end cell cell cos invisible function application x end cell cell sin invisible function application x end cell end table close vertical bar equals 0 in the interval negative pi over 4 less or equal than x less or equal than pi over 4 is

    The number of distinct real roots of open vertical bar table attributes columnalign center center center columnspacing 1em end attributes row cell sin invisible function application x end cell cell cos invisible function application x end cell cell cos invisible function application x end cell row cell cos invisible function application x end cell cell sin invisible function application x end cell cell cos invisible function application x end cell row cell cos invisible function application x end cell cell cos invisible function application x end cell cell sin invisible function application x end cell end table close vertical bar equals 0 in the interval negative pi over 4 less or equal than x less or equal than pi over 4 is

    maths-General
    parallel
    General
    maths-

    If 0 less or equal than x less than 2 pi, then the number of real values of x, which satisfy the equationcos invisible function application x plus cos invisible function application 2 x plus cos invisible function application 3 x plus cos invisible function application 4 x equals 0 is :

    If 0 less or equal than x less than 2 pi, then the number of real values of x, which satisfy the equationcos invisible function application x plus cos invisible function application 2 x plus cos invisible function application 3 x plus cos invisible function application 4 x equals 0 is :

    maths-General
    General
    maths-

    The number of solutions of the equation cos squared invisible function application open parentheses x plus pi over 6 close parentheses plus cos squared invisible function application x minus 2 cos invisible function application open parentheses x plus pi over 6 close parentheses cos invisible function application open parentheses pi over 6 close parentheses equals sin squared invisible function application pi over 6 in the interval left parenthesis negative pi divided by 2 comma pi divided by 2 right parenthesis is

    The number of solutions of the equation cos squared invisible function application open parentheses x plus pi over 6 close parentheses plus cos squared invisible function application x minus 2 cos invisible function application open parentheses x plus pi over 6 close parentheses cos invisible function application open parentheses pi over 6 close parentheses equals sin squared invisible function application pi over 6 in the interval left parenthesis negative pi divided by 2 comma pi divided by 2 right parenthesis is

    maths-General
    General
    maths-

    The possible values of theta element of left parenthesis 0 comma pi right parenthesis such thatsin invisible function application theta plus sin invisible function application 4 theta plus sin invisible function application 7 theta equals 0  are :

    The possible values of theta element of left parenthesis 0 comma pi right parenthesis such thatsin invisible function application theta plus sin invisible function application 4 theta plus sin invisible function application 7 theta equals 0  are :

    maths-General
    parallel
    General
    maths-

    The number of values of x in the interval [0, 3straight pi] satisfying the equation ,2 sin squared invisible function application x plus 5 sin invisible function application x minus 3 equals 0 is

    The number of values of x in the interval [0, 3straight pi] satisfying the equation ,2 sin squared invisible function application x plus 5 sin invisible function application x minus 3 equals 0 is

    maths-General
    General
    maths-

    The number of solutions of tan x + sec x = 2 cos x in [0, 2straight pi], is

    The number of solutions of tan x + sec x = 2 cos x in [0, 2straight pi], is

    maths-General
    General
    maths-

    Over left square bracket negative pi comma pi right square bracket the solution of 2 sin squared invisible function application open parentheses x plus pi over 4 close parentheses plus square root of 3 cos invisible function application 2 x greater or equal than 0 is

    Over left square bracket negative pi comma pi right square bracket the solution of 2 sin squared invisible function application open parentheses x plus pi over 4 close parentheses plus square root of 3 cos invisible function application 2 x greater or equal than 0 is

    maths-General
    parallel
    General
    maths-

    Solution to inequality cos 2x + 5 cos x + 3 ≥ 0 over left square bracket negative pi comma pi right square bracket is

    Solution to inequality cos 2x + 5 cos x + 3 ≥ 0 over left square bracket negative pi comma pi right square bracket is

    maths-General
    General
    maths-

    Let f left parenthesis x right parenthesis equals fraction numerator c o s e c to the power of 4 end exponent invisible function application x minus 2 c o s e c to the power of 2 end exponent invisible function application x plus 1 over denominator c o s e c invisible function application x left parenthesis c o s e c invisible function application x minus s i n invisible function application x right parenthesis plus fraction numerator s i n invisible function application x minus c o s invisible function application x over denominator sin invisible function application x end fraction plus c o t invisible function application x end fraction The sum of all the solutions of f (x) = 0 in [0, 100p] is

    Let f left parenthesis x right parenthesis equals fraction numerator c o s e c to the power of 4 end exponent invisible function application x minus 2 c o s e c to the power of 2 end exponent invisible function application x plus 1 over denominator c o s e c invisible function application x left parenthesis c o s e c invisible function application x minus s i n invisible function application x right parenthesis plus fraction numerator s i n invisible function application x minus c o s invisible function application x over denominator sin invisible function application x end fraction plus c o t invisible function application x end fraction The sum of all the solutions of f (x) = 0 in [0, 100p] is

    maths-General
    General
    maths-

    The general solution of the trigonometric equation tan x + tan 2x + tan 3x = tan x · tan 2x tan 3x is
    where n element of I

    The general solution of the trigonometric equation tan x + tan 2x + tan 3x = tan x · tan 2x tan 3x is
    where n element of I

    maths-General
    parallel
    General
    maths-

    The sum of all the solution of cotθ= sin 2θ(θ ≠ nstraight pi, n integer), 0 ,less or equal than theta less or equal than pi is

    The sum of all the solution of cotθ= sin 2θ(θ ≠ nstraight pi, n integer), 0 ,less or equal than theta less or equal than pi is

    maths-General
    General
    Maths-

    L t subscript x not stretchy rightwards arrow 0 end subscript fraction numerator left parenthesis 1 plus x right parenthesis to the power of 1 fifth end exponent minus left parenthesis 1 minus x right parenthesis to the power of 1 half end exponent over denominator x end fraction

    L t subscript x not stretchy rightwards arrow 0 end subscript fraction numerator left parenthesis 1 plus x right parenthesis to the power of 1 fifth end exponent minus left parenthesis 1 minus x right parenthesis to the power of 1 half end exponent over denominator x end fraction

    Maths-General
    General
    Maths-

    L t subscript x not stretchy rightwards arrow 0 end subscript fraction numerator sin space open parentheses pi cos squared space x close parentheses over denominator x squared end fraction

    L t subscript x not stretchy rightwards arrow 0 end subscript fraction numerator sin space open parentheses pi cos squared space x close parentheses over denominator x squared end fraction

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.