Physics-
General
Easy
Question
An electron is accelerated through a potential difference of 100 volt and then enters a region where it is moving perpendicular to a magnetic field B T = 0.2 The radius of the circular path is cm
- 0.0167
- 0.7
- 0.2
- 0.6
The correct answer is: 0.0167
Related Questions to study
physics-
The magnitude of the force depends upon the ....
The magnitude of the force depends upon the ....
physics-General
Physics-
A particle of charge Q and mass M moves in a circular path of radius R in a uniform magnetic field of magnitude B. The same particle now moves with the same speed in a circular path of same radius R in the space between the cylindrical electrodes of the cylindrical capacitor. The radius of the inner electrode is R/2 while that of the outer electrode is 3R/2. Then the potential difference between the capacitor electrodes must be
A particle of charge Q and mass M moves in a circular path of radius R in a uniform magnetic field of magnitude B. The same particle now moves with the same speed in a circular path of same radius R in the space between the cylindrical electrodes of the cylindrical capacitor. The radius of the inner electrode is R/2 while that of the outer electrode is 3R/2. Then the potential difference between the capacitor electrodes must be
Physics-General
Physics-
A particle of specific charge (charge/mass) a starts moving from the origin under the action of an electric field and magnetic field Its velocity at The value of x0 is:
A particle of specific charge (charge/mass) a starts moving from the origin under the action of an electric field and magnetic field Its velocity at The value of x0 is:
Physics-General
physics-
OABC is a current carrying square loop an electron is projected from the centre of loop along its diagonal AC as shown. Unit vector in the direction of initial acceleration will be
OABC is a current carrying square loop an electron is projected from the centre of loop along its diagonal AC as shown. Unit vector in the direction of initial acceleration will be
physics-General
physics-
A mass spectrometer is a device which select particle of equal mass. An iron with electric charge q > 0 and mass m starts at rest from a source S and is accelerated through a potential difference V. It passes through a hole into a region of constant magnetic field perpendicular to the plane of the paper as shown in the figure. The particle is deflected by the magnetic field and emerges through the bottom hole at a distance d from the top hole. The mass of the particle is
A mass spectrometer is a device which select particle of equal mass. An iron with electric charge q > 0 and mass m starts at rest from a source S and is accelerated through a potential difference V. It passes through a hole into a region of constant magnetic field perpendicular to the plane of the paper as shown in the figure. The particle is deflected by the magnetic field and emerges through the bottom hole at a distance d from the top hole. The mass of the particle is
physics-General
Physics-
A charged particle moves in a magnetic field with initial velocity The path of the particle will be
A charged particle moves in a magnetic field with initial velocity The path of the particle will be
Physics-General
Physics-
An electron having kinetic energy T is moving in a circular orbit of radius R perpendicular to a uniform magnetic induction If kinetic energy is doubled and magnetic induction tripled, the radius will become
An electron having kinetic energy T is moving in a circular orbit of radius R perpendicular to a uniform magnetic induction If kinetic energy is doubled and magnetic induction tripled, the radius will become
Physics-General
physics-
Two long conductors are arranged as shown above to form overlapping cylinders, each of raidus r, whose centers are separated by a distance d. Current of density J flows into the plane of the page along the shaded part of one conductor and an equal current flows out of the plane of the page along the shaded portion of the other, as shown. What are the magnitude and direction of the magnetic field at point A?
Two long conductors are arranged as shown above to form overlapping cylinders, each of raidus r, whose centers are separated by a distance d. Current of density J flows into the plane of the page along the shaded part of one conductor and an equal current flows out of the plane of the page along the shaded portion of the other, as shown. What are the magnitude and direction of the magnetic field at point A?
physics-General
physics-
A long straight metal rod has a very long hole of radius ‘a’ drilled parallel to the rod axis as shown in the figure. If the rod carries a current ‘i’ find the value of magnetic induction on the axis of the hole, where OC = c
A long straight metal rod has a very long hole of radius ‘a’ drilled parallel to the rod axis as shown in the figure. If the rod carries a current ‘i’ find the value of magnetic induction on the axis of the hole, where OC = c
physics-General
physics-
A hollow cylinder having infinite length and carrying uniform current per unit length along the circumference as shown. Magnetic field inside the cylinder is
A hollow cylinder having infinite length and carrying uniform current per unit length along the circumference as shown. Magnetic field inside the cylinder is
physics-General
physics-
A long straight wire, carrying current I, is bent at its midpoint to from an angle of 45°. Induction of magnetic field at point P, distant R from point of bending is equal to :
A long straight wire, carrying current I, is bent at its midpoint to from an angle of 45°. Induction of magnetic field at point P, distant R from point of bending is equal to :
physics-General
physics-
A long thin walled pipe of radius R carries a current I along its length. The current density is uniform over the circumference of the pipe. The magnetic field at the center of the pipe due to quarter portion of the pipe shown, is
A long thin walled pipe of radius R carries a current I along its length. The current density is uniform over the circumference of the pipe. The magnetic field at the center of the pipe due to quarter portion of the pipe shown, is
physics-General
physics-
Find the magnetic field at P due to the arrangement shown
Find the magnetic field at P due to the arrangement shown
physics-General
Physics-
Two mutually perpendicular conductors carrying currents I1 and I2 lie in one plane. Locus of the point at which the magnetic induction is zero, is a
Two mutually perpendicular conductors carrying currents I1 and I2 lie in one plane. Locus of the point at which the magnetic induction is zero, is a
Physics-General
physics-
Infinite number of straight wires each carrying current I are equally placed as shown in the figure. Adjacent wires have current in opposite direction. Net magnetic field at point P is
Infinite number of straight wires each carrying current I are equally placed as shown in the figure. Adjacent wires have current in opposite direction. Net magnetic field at point P is
physics-General