Physics-
General
Easy

Question

Drawings I and II show two samples of electric field lines

  1. The electric fields in both I and II are produced. by negative charge located somewhere on the left and positive charges located somewhere on the right    
  2. In both I and II the electric field is the same every where    
  3. In both cases the field becomes stronger on moving from left to right    
  4. The electric field in I is the same everywhere, but in II the electric field becomes stronger on moving from left to right    

The correct answer is: The electric field in I is the same everywhere, but in II the electric field becomes stronger on moving from left to right

Related Questions to study

General
physics-

Figure shows lines of force for a system of two point charges. The possible choice for the charges is

Figure shows lines of force for a system of two point charges. The possible choice for the charges is

physics-General
General
physics-

Figure shows the electric lines of force emerging from a charged body. If the electric field at ‘A’ and ‘B’ are EA and EB respectively and if the displacement between ‘A’ and ‘B’ is ‘r’ then

Figure shows the electric lines of force emerging from a charged body. If the electric field at ‘A’ and ‘B’ are EA and EB respectively and if the displacement between ‘A’ and ‘B’ is ‘r’ then

physics-General
General
physics-

Four charges are arranged at the corners of a square ABCD as shown in the figure. The force on the positive charge kept at the centre ‘O’ is

Four charges are arranged at the corners of a square ABCD as shown in the figure. The force on the positive charge kept at the centre ‘O’ is

physics-General
parallel
General
physics-

A detector is moving in a circular path of radius r in anticlock wise direction with a constant angular velocity omega as shown in the figure At time t=0, it starts from the location shown at A, assuming source at rest The time interval between minimum and maximum frequency as received by the detector

A detector is moving in a circular path of radius r in anticlock wise direction with a constant angular velocity omega as shown in the figure At time t=0, it starts from the location shown at A, assuming source at rest The time interval between minimum and maximum frequency as received by the detector

physics-General
General
physics-

A detector is moving in a circular path of radius r in anticlock wise direction with a constant angular velocity omega as shown in the figure At time t=0, it starts from the location shown at A, assuming source at rest The time at which the detector will hear the maximum frequency for the 1st time

A detector is moving in a circular path of radius r in anticlock wise direction with a constant angular velocity omega as shown in the figure At time t=0, it starts from the location shown at A, assuming source at rest The time at which the detector will hear the maximum frequency for the 1st time

physics-General
General
physics-

A detector is moving in a circular path of radius r in anticlock wise direction with a constant angular velocity omega as shown in the figure At time t=0, it starts from the location shown at A, assuming source at rest The frequency as received by the detector when it rotates by an angle fraction numerator pi over denominator 2 end fraction

A detector is moving in a circular path of radius r in anticlock wise direction with a constant angular velocity omega as shown in the figure At time t=0, it starts from the location shown at A, assuming source at rest The frequency as received by the detector when it rotates by an angle fraction numerator pi over denominator 2 end fraction

physics-General
parallel
General
physics-

Two speakers S subscript 1 end subscript & S subscript 2 end subscript driven by the same amplifiers are placed at y=1m and y=-1m The speakers vibrate in phase at 600 Hz A man stands at a point on x-axis at a very large distance form the origin and starts moving parallel to y-axis The speed of sound in air is 330 m/s If he continous to walk along the same line how many more maxima can he hear

Two speakers S subscript 1 end subscript & S subscript 2 end subscript driven by the same amplifiers are placed at y=1m and y=-1m The speakers vibrate in phase at 600 Hz A man stands at a point on x-axis at a very large distance form the origin and starts moving parallel to y-axis The speed of sound in air is 330 m/s If he continous to walk along the same line how many more maxima can he hear

physics-General
General
physics-

Two speakers S subscript 1 end subscript & S subscript 2 end subscript driven by the same amplifiers are placed at y=1m and y=-1m The speakers vibrate in phase at 600 Hz A man stands at a point on x-axis at a very large distance form the origin and starts moving parallel to y-axis The speed of sound in air is 330 m/s The angle θ at which he will hear maximum intensity for first time?

Two speakers S subscript 1 end subscript & S subscript 2 end subscript driven by the same amplifiers are placed at y=1m and y=-1m The speakers vibrate in phase at 600 Hz A man stands at a point on x-axis at a very large distance form the origin and starts moving parallel to y-axis The speed of sound in air is 330 m/s The angle θ at which he will hear maximum intensity for first time?

physics-General
General
physics-

Two speakers S subscript 1 end subscript & S subscript 2 end subscript driven by the same amplifiers are placed at y=1m and y=-1m The speakers vibrate in phase at 600 Hz A man stands at a point on x-axis at a very large distance form the origin and starts moving parallel to y-axis The speed of sound in air is 330 m/s The angle θ at which intensity of sound drop to a minimum for the first time

Two speakers S subscript 1 end subscript & S subscript 2 end subscript driven by the same amplifiers are placed at y=1m and y=-1m The speakers vibrate in phase at 600 Hz A man stands at a point on x-axis at a very large distance form the origin and starts moving parallel to y-axis The speed of sound in air is 330 m/s The angle θ at which intensity of sound drop to a minimum for the first time

physics-General
parallel
General
physics-

When a composite wire is made by joining two wires as shown in figure and possible frequencies of this wire is asked (both ends fixed) then the lowest frequency is that at which individual lowest frequencies of the two wires are equal text In the figure given :  end text l subscript 1 end subscript equals l subscript 2 end subscript equals l. mu subscript 1 end subscript equals fraction numerator mu subscript 2 end subscript over denominator 9 end fraction equals mu text  . end textThe lowest frequency such that the junction is an antinode is

When a composite wire is made by joining two wires as shown in figure and possible frequencies of this wire is asked (both ends fixed) then the lowest frequency is that at which individual lowest frequencies of the two wires are equal text In the figure given :  end text l subscript 1 end subscript equals l subscript 2 end subscript equals l. mu subscript 1 end subscript equals fraction numerator mu subscript 2 end subscript over denominator 9 end fraction equals mu text  . end textThe lowest frequency such that the junction is an antinode is

physics-General
General
physics-

When a composite wire is made by joining two wires as shown in figure and possible frequencies of this wire is asked (both ends fixed) then the lowest frequency is that at which individual lowest frequencies of the two wires are equal text In the figure given :  end text l subscript 1 end subscript equals l subscript 2 end subscript equals l. mu subscript 1 end subscript equals fraction numerator mu subscript 2 end subscript over denominator 9 end fraction equals mu text  . end textThe lowest frequency such that the junction is a node is

When a composite wire is made by joining two wires as shown in figure and possible frequencies of this wire is asked (both ends fixed) then the lowest frequency is that at which individual lowest frequencies of the two wires are equal text In the figure given :  end text l subscript 1 end subscript equals l subscript 2 end subscript equals l. mu subscript 1 end subscript equals fraction numerator mu subscript 2 end subscript over denominator 9 end fraction equals mu text  . end textThe lowest frequency such that the junction is a node is

physics-General
General
physics-

A heavy but uniform rope of length L is suspended from a ceiling A particle is dropped from the ceiling at the same instant the bottom end is given the jerk where will the particle meet the pulse measured from bottom?

A heavy but uniform rope of length L is suspended from a ceiling A particle is dropped from the ceiling at the same instant the bottom end is given the jerk where will the particle meet the pulse measured from bottom?

physics-General
parallel
General
physics-

A heavy but uniform rope of length L is suspended from a ceiling If the rope is given a sudden sideways jerk at the bottom, how long will it take for the pulse to reach the ceiling?

A heavy but uniform rope of length L is suspended from a ceiling If the rope is given a sudden sideways jerk at the bottom, how long will it take for the pulse to reach the ceiling?

physics-General
General
physics-

A heavy but uniform rope of length L is suspended from a ceiling Find the velocity of transverse wave travelling on the string as a funcition of the distance(x) from the lower end

A heavy but uniform rope of length L is suspended from a ceiling Find the velocity of transverse wave travelling on the string as a funcition of the distance(x) from the lower end

physics-General
General
physics-

A train A crosses a station with a speed of 40 m/s and whistles a short pulse of natural frequency n subscript 0 end subscript equals 596 H z Another train B is approaching towards the same station with the same speed along a parallel track Two tracks are d = 99m apart When train A whistles, train B is 152m away from the station as shown in fig If velocity of sound in air v equals 330 m divided by s, calculate frequency of the pulse heard by driver of train B

A train A crosses a station with a speed of 40 m/s and whistles a short pulse of natural frequency n subscript 0 end subscript equals 596 H z Another train B is approaching towards the same station with the same speed along a parallel track Two tracks are d = 99m apart When train A whistles, train B is 152m away from the station as shown in fig If velocity of sound in air v equals 330 m divided by s, calculate frequency of the pulse heard by driver of train B

physics-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.