Physics-
General
Easy

Question

Mass m shown in the figure is in equilibrium. If it is displaced further by x and released find its acceleration just after it is released. Take pulleys to be light & smooth and strings light.

  1. fraction numerator 4 k x over denominator 5 m end fraction    
  2. fraction numerator 2 k x over denominator 5 m end fraction    
  3. fraction numerator 4 k x over denominator m end fraction    
  4. none of these a    

The correct answer is: fraction numerator 4 k x over denominator m end fraction


    Initially the block is at rest under action of force 2T upward and mg downwards. When the block is pulled downwards by x, the spring extends by 2x. Hence tension T increases by 2kx. Thus the net unbalanced force on block of mass m is 4kx

    \ acceleration of the block is = m/4kx

    Related Questions to study

    General
    physics-

    In the figure shown, the pulleys and strings are massless. The acceleration of the block of mass 4m just after the system is released from rest is open parentheses theta equals s i n to the power of negative 1 end exponent invisible function application fraction numerator 3 over denominator 5 end fraction close parentheses

    In the figure shown, the pulleys and strings are massless. The acceleration of the block of mass 4m just after the system is released from rest is open parentheses theta equals s i n to the power of negative 1 end exponent invisible function application fraction numerator 3 over denominator 5 end fraction close parentheses

    physics-General
    General
    maths-

    If S and straight S to the power of straight prime are two foci of an ellipse fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction blank+blank fraction numerator blank y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction= 1 left parenthesis a less than b right parenthesis and P open parentheses x subscript 1 end subscript comma y subscript 1 end subscript close parentheses a point on it, then SP + straight S to the power of straight prime P is equal to-

    If S and straight S to the power of straight prime are two foci of an ellipse fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction blank+blank fraction numerator blank y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction= 1 left parenthesis a less than b right parenthesis and P open parentheses x subscript 1 end subscript comma y subscript 1 end subscript close parentheses a point on it, then SP + straight S to the power of straight prime P is equal to-

    maths-General
    General
    physics-

    A cylinder rests in a supporting carriage as shown. The side AB of carriage makes an angle 30 to the power of ring operator end exponent with the horizontal and side BC is vertical. The carriage lies on a fixed horizontal surface and is being pulled towards left with an horizontal acceleration 'a'. The magnitude of normal reactions exerted by sides AB and BC of carriage on the cylinder be N subscript A B end subscript text  and  end text N subscript B C end subscriptrespectively. Neglect friction everywhere. Then as the magnitude of acceleration 'a ' of the carriage is increased, pick up the correct statement:

    A cylinder rests in a supporting carriage as shown. The side AB of carriage makes an angle 30 to the power of ring operator end exponent with the horizontal and side BC is vertical. The carriage lies on a fixed horizontal surface and is being pulled towards left with an horizontal acceleration 'a'. The magnitude of normal reactions exerted by sides AB and BC of carriage on the cylinder be N subscript A B end subscript text  and  end text N subscript B C end subscriptrespectively. Neglect friction everywhere. Then as the magnitude of acceleration 'a ' of the carriage is increased, pick up the correct statement:

    physics-General
    parallel
    General
    physics-

    In the figure shown, a person wants to raise a block lying on the ground to a height h. In both the cases if time required is same then in which case he has to exert more force. Assume pulleys and strings light.

    In the figure shown, a person wants to raise a block lying on the ground to a height h. In both the cases if time required is same then in which case he has to exert more force. Assume pulleys and strings light.

    physics-General
    General
    physics-

    A rod of length 2 l is moving such that its ends A and B move in contact with the horizontal floor and vertical wall respectively as shown in figure. O is the intersection point of the vertical wall and horizontal floor. The velocity vector of the centre of rod C is always directed along tangent drawn at C to the –

    A rod of length 2 l is moving such that its ends A and B move in contact with the horizontal floor and vertical wall respectively as shown in figure. O is the intersection point of the vertical wall and horizontal floor. The velocity vector of the centre of rod C is always directed along tangent drawn at C to the –

    physics-General
    General
    maths-

    The orthogonal projection of a with not stretchy bar on top equals 2 l with not stretchy bar on top plus 3 ȷ with not stretchy bar on top plus 3 k with not stretchy bar on top on stack b with minus on top equals stack i with minus on top minus 2 stack j with minus on top plus stack k with minus on top text  (where  end text stack i with minus on top times stack j with minus on top times stack k with minus on top are unit vectors along three mutually perpendicular directions )

    The orthogonal projection of a with not stretchy bar on top equals 2 l with not stretchy bar on top plus 3 ȷ with not stretchy bar on top plus 3 k with not stretchy bar on top on stack b with minus on top equals stack i with minus on top minus 2 stack j with minus on top plus stack k with minus on top text  (where  end text stack i with minus on top times stack j with minus on top times stack k with minus on top are unit vectors along three mutually perpendicular directions )

    maths-General
    parallel
    General
    maths-

    If S and straight S to the power of straight prime are foci and A be one and of minor axis of ellipse fraction numerator x to the power of 2 end exponent over denominator 4 end fraction+fraction numerator y to the power of 2 end exponent over denominator 1 end fraction= 1, then area of straight capital delta text  SAS'  end textis-

    If S and straight S to the power of straight prime are foci and A be one and of minor axis of ellipse fraction numerator x to the power of 2 end exponent over denominator 4 end fraction+fraction numerator y to the power of 2 end exponent over denominator 1 end fraction= 1, then area of straight capital delta text  SAS'  end textis-

    maths-General
    General
    maths-

    Q is a point on the auxiliary circle corresponding to the point P of the ellipse fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction plus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction = 1. If T is the foot of the perpendicular dropped from the focus S. onto the tangent to the auxiliary circle at Q then the straight capital delta SPT is -

    Q is a point on the auxiliary circle corresponding to the point P of the ellipse fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction plus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction = 1. If T is the foot of the perpendicular dropped from the focus S. onto the tangent to the auxiliary circle at Q then the straight capital delta SPT is -

    maths-General
    General
    physics-

    A bob is hanging over a pulley inside a car through a string. The second end of the string is in the hand of a person standing in the car. The car is moving with constant acceleration 'a' directed horizontally as shown in figure. Other end of the string is pulled with constant acceleration ' a ' vertically downward. The tension in the string is equal to :

    A bob is hanging over a pulley inside a car through a string. The second end of the string is in the hand of a person standing in the car. The car is moving with constant acceleration 'a' directed horizontally as shown in figure. Other end of the string is pulled with constant acceleration ' a ' vertically downward. The tension in the string is equal to :

    physics-General
    parallel
    General
    physics-

    Two blocks A and B of masses m & 2m respectively are held at rest such that the spring is in natural length. Find out the accelerations of both the blocks just after release:

    Two blocks A and B of masses m & 2m respectively are held at rest such that the spring is in natural length. Find out the accelerations of both the blocks just after release:

    physics-General
    General
    physics-

    A light spring is compressed and placed horizontally between a vertical fixed wall and a block free to slide over a smooth horizontal table top as shown in the figure. The system is released from rest. The graph which represents the relation between the magnitude of acceleration ‘ a ‘ of the block and the distance ‘ x ‘ travelled by it (as long as the spring is compressed) is:

    A light spring is compressed and placed horizontally between a vertical fixed wall and a block free to slide over a smooth horizontal table top as shown in the figure. The system is released from rest. The graph which represents the relation between the magnitude of acceleration ‘ a ‘ of the block and the distance ‘ x ‘ travelled by it (as long as the spring is compressed) is:

    physics-General
    General
    physics-

    A wire, which passes through the hole in a small bead, is bent in the form of quarter of a circle. The wire is fixed vertically on ground as shown in the figure. The bead is released from near the top of the wire and it slides along the wire without friction. As the bead moves from A to B, the force it applies on the wire is

    A wire, which passes through the hole in a small bead, is bent in the form of quarter of a circle. The wire is fixed vertically on ground as shown in the figure. The bead is released from near the top of the wire and it slides along the wire without friction. As the bead moves from A to B, the force it applies on the wire is

    physics-General
    parallel
    General
    physics-

    In the figure, a ladder of mass m is shown leaning against a wall. It is in static equilibrium making an angle null and that between the floor and the ladder is mu subscript 2 end subscript . The normal reaction of the wall on the ladder is N subscript 1 end subscript and that of the floor is N subscript 2 end subscript . If the ladder is about to slip, then

    In the figure, a ladder of mass m is shown leaning against a wall. It is in static equilibrium making an angle null and that between the floor and the ladder is mu subscript 2 end subscript . The normal reaction of the wall on the ladder is N subscript 1 end subscript and that of the floor is N subscript 2 end subscript . If the ladder is about to slip, then

    physics-General
    General
    physics-

    A block of mass m is on an inclined plane of angle null. The block is held stationary by applying a force P parallel to the plane. The direction of force pointing up the plane is taken to be positive. As P is varied from
    P subscript 1 end subscript equals m g left parenthesis s i n invisible function application theta minus mu c o s invisible function application theta toblank P subscript 2 end subscript equals m g open parentheses sin invisible function application theta plus mu cos invisible function application theta close parenthesesthe frictional force f versus P graph will look like

    A block of mass m is on an inclined plane of angle null. The block is held stationary by applying a force P parallel to the plane. The direction of force pointing up the plane is taken to be positive. As P is varied from
    P subscript 1 end subscript equals m g left parenthesis s i n invisible function application theta minus mu c o s invisible function application theta toblank P subscript 2 end subscript equals m g open parentheses sin invisible function application theta plus mu cos invisible function application theta close parenthesesthe frictional force f versus P graph will look like

    physics-General
    General
    physics-

    A mass ‘m’ is supported by a massless string wound around a uniform hollow cylinder of mass m and radius R. If the string does not slip on the cylinder, with what acceleration will the mass fall on release?

    A mass ‘m’ is supported by a massless string wound around a uniform hollow cylinder of mass m and radius R. If the string does not slip on the cylinder, with what acceleration will the mass fall on release?

    physics-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.