Physics-
General
Easy

Question

Tangential acceleration of a particle moving in a circle of radius 1 m varies with time t as (initial velocity of particle is zero). Time after which total acceleration of particle makes and angle of 30° with radial acceleration is

  1. 4 sec    
  2. 4/3 sec    
  3. 22/3 sec    
  4. square root of 2 s e c    

The correct answer is: 22/3 sec

Related Questions to study

General
physics-

A truck starting from rest moves with an acceleration of 5 m/s2 for 1 sec and then moves with constant velocity. The velocity w.r.t ground v/s time graph for block in truck is (Assume that block does not fall off the truck)

A truck starting from rest moves with an acceleration of 5 m/s2 for 1 sec and then moves with constant velocity. The velocity w.r.t ground v/s time graph for block in truck is (Assume that block does not fall off the truck)

physics-General
General
physics-

If position time graph of a particle is sine curve as shown, what will be its velocity-time graph

If position time graph of a particle is sine curve as shown, what will be its velocity-time graph

physics-General
General
Maths-

The value of not stretchy integral subscript negative 2 end subscript superscript 3 end superscript vertical line 1 minus x to the power of 2 end exponent vertical line d x is‐

The value of not stretchy integral subscript negative 2 end subscript superscript 3 end superscript vertical line 1 minus x to the power of 2 end exponent vertical line d x is‐

Maths-General
parallel
General
Maths-

not stretchy integral subscript negative pi end subscript superscript pi end superscript fraction numerator 2 x left parenthesis 1 plus blank s i n blank x right parenthesis over denominator 1 plus c o s to the power of 2 end exponent x end fraction equals

not stretchy integral subscript negative pi end subscript superscript pi end superscript fraction numerator 2 x left parenthesis 1 plus blank s i n blank x right parenthesis over denominator 1 plus c o s to the power of 2 end exponent x end fraction equals

Maths-General
General
Maths-

If I subscript n end subscript equals not stretchy integral subscript 0 end subscript superscript pi divided by 4 end superscript t a n to the power of n end exponent blank x d x then the value of n left parenthesis I subscript n minus 1 end subscript plus I subscript n plus 1 end subscript right parenthesis is‐

If I subscript n end subscript equals not stretchy integral subscript 0 end subscript superscript pi divided by 4 end superscript t a n to the power of n end exponent blank x d x then the value of n left parenthesis I subscript n minus 1 end subscript plus I subscript n plus 1 end subscript right parenthesis is‐

Maths-General
General
maths-

Statement‐I:: not stretchy sum subscript r equals 0 end subscript superscript n minus 1 end superscript fraction numerator 1 over denominator n end fraction left parenthesis square root of fraction numerator r over denominator n end fraction end root plus 1 right parenthesis less than not stretchy integral subscript 0 end subscript superscript 1 end superscript left parenthesis square root of x plus 1 right parenthesis d x less than not stretchy sum subscript r equals 1 end subscript superscript n end superscript fraction numerator 1 over denominator n end fraction left parenthesis square root of fraction numerator r over denominator n end fraction end root plus 1 right parenthesis comma n element of N.
Statement‐II:: If f left parenthesis x right parenthesis is continuous and increasing in left square bracket 0 , 1 right square bracket, then not stretchy sum subscript r equals 0 end subscript superscript n minus 1 end superscript fraction numerator 1 over denominator n end fraction f left parenthesis fraction numerator r over denominator n end fraction right parenthesis less than not stretchy integral subscript 0 end subscript superscript 1 end superscript f left parenthesisxXlx less than not stretchy sum subscript r equals 1 end subscript superscript n end superscript fraction numerator 1 over denominator n end fraction f left parenthesis fraction numerator r over denominator n end fraction right parenthesis , where n element of N

Statement‐I:: not stretchy sum subscript r equals 0 end subscript superscript n minus 1 end superscript fraction numerator 1 over denominator n end fraction left parenthesis square root of fraction numerator r over denominator n end fraction end root plus 1 right parenthesis less than not stretchy integral subscript 0 end subscript superscript 1 end superscript left parenthesis square root of x plus 1 right parenthesis d x less than not stretchy sum subscript r equals 1 end subscript superscript n end superscript fraction numerator 1 over denominator n end fraction left parenthesis square root of fraction numerator r over denominator n end fraction end root plus 1 right parenthesis comma n element of N.
Statement‐II:: If f left parenthesis x right parenthesis is continuous and increasing in left square bracket 0 , 1 right square bracket, then not stretchy sum subscript r equals 0 end subscript superscript n minus 1 end superscript fraction numerator 1 over denominator n end fraction f left parenthesis fraction numerator r over denominator n end fraction right parenthesis less than not stretchy integral subscript 0 end subscript superscript 1 end superscript f left parenthesisxXlx less than not stretchy sum subscript r equals 1 end subscript superscript n end superscript fraction numerator 1 over denominator n end fraction f left parenthesis fraction numerator r over denominator n end fraction right parenthesis , where n element of N

maths-General
parallel
General
maths-

not stretchy integral subscript 2 end subscript superscript 3 end superscript fraction numerator square root of x over denominator square root of left parenthesis 5 minus x right parenthesis end root plus square root of x end fraction d x equals

not stretchy integral subscript 2 end subscript superscript 3 end superscript fraction numerator square root of x over denominator square root of left parenthesis 5 minus x right parenthesis end root plus square root of x end fraction d x equals

maths-General
General
maths-

stack lim with n rightwards arrow infinity below invisible function application fraction numerator pi over denominator n end fraction left square bracket blank s i n blank fraction numerator pi over denominator n end fraction plus blank s i n blank fraction numerator 2 pi over denominator n end fraction plus horizontal ellipsis plus blank s i n blank fraction numerator left parenthesis n minus 1 right parenthesis pi over denominator n end fraction right square bracket is equals to:

stack lim with n rightwards arrow infinity below invisible function application fraction numerator pi over denominator n end fraction left square bracket blank s i n blank fraction numerator pi over denominator n end fraction plus blank s i n blank fraction numerator 2 pi over denominator n end fraction plus horizontal ellipsis plus blank s i n blank fraction numerator left parenthesis n minus 1 right parenthesis pi over denominator n end fraction right square bracket is equals to:

maths-General
General
maths-

not stretchy integral subscript e to the power of e to the power of e end exponent end exponent end subscript superscript e to the power of e to the power of e to the power of e end exponent end exponent end exponent end superscript fraction numerator d x over denominator x blank l n blank x times blank l n blank left parenthesis blank l n blank x right parenthesis times blank l n blank left parenthesis blank l n blank left parenthesis blank l n blank x right parenthesis right parenthesis end fraction equals

not stretchy integral subscript e to the power of e to the power of e end exponent end exponent end subscript superscript e to the power of e to the power of e to the power of e end exponent end exponent end exponent end superscript fraction numerator d x over denominator x blank l n blank x times blank l n blank left parenthesis blank l n blank x right parenthesis times blank l n blank left parenthesis blank l n blank left parenthesis blank l n blank x right parenthesis right parenthesis end fraction equals

maths-General
parallel
General
maths-

If integral subscript 0 superscript pi divided by 3 end superscript fraction numerator blank c o s blank x over denominator 3 plus 4 blank s i n blank x end fraction d x equals k blank l o g blank left parenthesis fraction numerator 3 plus 2 square root of 3 over denominator 3 end fraction right parenthesis then k is‐

If integral subscript 0 superscript pi divided by 3 end superscript fraction numerator blank c o s blank x over denominator 3 plus 4 blank s i n blank x end fraction d x equals k blank l o g blank left parenthesis fraction numerator 3 plus 2 square root of 3 over denominator 3 end fraction right parenthesis then k is‐

maths-General
General
physics-

In the figure shown in YDSE, a parallel beam of light is incident on the slit from a medium of refractive index n1 The wavelength of light in this medium is l1 A transparent slab of thickness ‘t’ and refractive index n3 is put infront of one slit. The medium between the screen and the plane of the slits is n2 The phase difference between the light waves reaching point ‘O’ (symmetrical, relative to the slits) is :

In the figure shown in YDSE, a parallel beam of light is incident on the slit from a medium of refractive index n1 The wavelength of light in this medium is l1 A transparent slab of thickness ‘t’ and refractive index n3 is put infront of one slit. The medium between the screen and the plane of the slits is n2 The phase difference between the light waves reaching point ‘O’ (symmetrical, relative to the slits) is :

physics-General
General
physics-

In YDSE, the source placed symmetrically with respect to the slit is now moved parallel to the plane of the slits so that it is closer to the upper slit, as shown. Then,

In YDSE, the source placed symmetrically with respect to the slit is now moved parallel to the plane of the slits so that it is closer to the upper slit, as shown. Then,

physics-General
parallel
General
physics-

A parallel beam of light 500nm is incident at an angle 30° with the normal to the slit plane in a young's double slit experiment. The intensity due to each slit is Io. Point O is equidistant from S1 and S2 . The distance between slits is 1mm.

A parallel beam of light 500nm is incident at an angle 30° with the normal to the slit plane in a young's double slit experiment. The intensity due to each slit is Io. Point O is equidistant from S1 and S2 . The distance between slits is 1mm.

physics-General
General
physics-

In the figure shown if a parallel beam of white light is incident on the plane of the slits then the distance of the white spot on the screen from O is [Assume d << D, lambda << d]

In the figure shown if a parallel beam of white light is incident on the plane of the slits then the distance of the white spot on the screen from O is [Assume d << D, lambda << d]

physics-General
General
physics-

Two slits are separated by 0.3 mm. A beam of 500 nm light strikes the slits producing an interference pattern. The number of maxima observed in the angular range – 30° < theta < 30°.

Two slits are separated by 0.3 mm. A beam of 500 nm light strikes the slits producing an interference pattern. The number of maxima observed in the angular range – 30° < theta < 30°.

physics-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.