Physics-
General
Easy
Question
The coefficient of friction between 4kg and 5 kg blocks is 0.2 and between 5kg block and ground is 0.1 respectively. Choose the correct statements
- Minimum force needed to cause system to move is 17N
- When force is 4N static friction at all surfaces is 4N to keep system at rest
- Maximum acceleration of 4kg block is 2m/s2
- Slipping between 4kg and 5 kg blocks start when F is 17N
The correct answer is: Maximum acceleration of 4kg block is 2m/s2
Related Questions to study
physics-
Adjoining figure shows a force of 40 N acting at 30° to the horizontal on a body of mass 5 kg resting on a smooth horizontal surface. Assuming that the acceleration of free–fall is 10 ms–2, which of the following statements A, B, C, D, E is (are) correct? [1] The horizontal force acting on the body is 20 N [2] The weight of the 5 kg mass acts vertically downwards [3] The net vertical force acting on the body is 30 N
Adjoining figure shows a force of 40 N acting at 30° to the horizontal on a body of mass 5 kg resting on a smooth horizontal surface. Assuming that the acceleration of free–fall is 10 ms–2, which of the following statements A, B, C, D, E is (are) correct? [1] The horizontal force acting on the body is 20 N [2] The weight of the 5 kg mass acts vertically downwards [3] The net vertical force acting on the body is 30 N
physics-General
physics-
A student calculates the acceleration of m1 in figure shown as Which assumption is not required to do this calculation.
A student calculates the acceleration of m1 in figure shown as Which assumption is not required to do this calculation.
physics-General
Physics-
A projectile of mass "m" is projected from ground with a speed of 50 m/s at an angle of 53° with the horizontal. It breaks up into two equal parts at the highest point of the trajectory. One particle coming to rest immediately after the explosion.
The distance between the pieces of the projectile when they reach the ground are:
A projectile of mass "m" is projected from ground with a speed of 50 m/s at an angle of 53° with the horizontal. It breaks up into two equal parts at the highest point of the trajectory. One particle coming to rest immediately after the explosion.
The distance between the pieces of the projectile when they reach the ground are:
Physics-General
physics-
A small block of mass m is placed on a wedge of mass M as shown, which is initially at rest. All the surfaces are frictionless . The spring attached to the other end of wedge has force constant k. If a' is the acceleration of m relative to the wedge as it starts coming down and A is the acceleration acquired by the wedge as the block starts coming down, then
Maximum retardation of M is:
A small block of mass m is placed on a wedge of mass M as shown, which is initially at rest. All the surfaces are frictionless . The spring attached to the other end of wedge has force constant k. If a' is the acceleration of m relative to the wedge as it starts coming down and A is the acceleration acquired by the wedge as the block starts coming down, then
Maximum retardation of M is:
physics-General
physics-
A small block of mass m is placed on a wedge of mass M as shown, which is initially at rest. All the surfaces are frictionless . The spring attached to the other end of wedge has force constant k. If a' is the acceleration of m relative to the wedge as it starts coming down and A is the acceleration acquired by the wedge as the block starts coming down, then
Maximum velocity of M is:
A small block of mass m is placed on a wedge of mass M as shown, which is initially at rest. All the surfaces are frictionless . The spring attached to the other end of wedge has force constant k. If a' is the acceleration of m relative to the wedge as it starts coming down and A is the acceleration acquired by the wedge as the block starts coming down, then
Maximum velocity of M is:
physics-General
physics-
A small block of mass m is placed on a wedge of mass M as shown, which is initially at rest. All the surfaces are frictionless . The spring attached to the other end of wedge has force constant k. If a' is the acceleration of m relative to the wedge as it starts coming down and A is the acceleration acquired by the wedge as the block starts coming down, then
A small block of mass m is placed on a wedge of mass M as shown, which is initially at rest. All the surfaces are frictionless . The spring attached to the other end of wedge has force constant k. If a' is the acceleration of m relative to the wedge as it starts coming down and A is the acceleration acquired by the wedge as the block starts coming down, then
physics-General
Physics-
Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.
Choose the incorrect statement, if m1 = m2 = m and both the persons jump one by one, then
Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.
Choose the incorrect statement, if m1 = m2 = m and both the persons jump one by one, then
Physics-General
physics-
Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.
When both the persons jump simultaneously with urel with respect to the trolley, then the velocity of the trolley is
Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.
When both the persons jump simultaneously with urel with respect to the trolley, then the velocity of the trolley is
physics-General
physics-
Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.
When both the persons jump simultaneously with same speed then
Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.
When both the persons jump simultaneously with same speed then
physics-General
physics-
Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.
When only the person standing at B jumps from the trolley towards right while the person at A keeps standing, then
Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.
When only the person standing at B jumps from the trolley towards right while the person at A keeps standing, then
physics-General
physics-
Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.
When the person standing at A jumps from the trolley towards left with urel with respect to the trolley, then
Two persons of mass m1 and m2 are standing at the two ends A and B respectively, of a trolley of mass M as shown.
When the person standing at A jumps from the trolley towards left with urel with respect to the trolley, then
physics-General
physics-
The figure shows a man of mass m standing at the end A of a trolley of mass M placed at rest on a smooth horizontal surface. The man starts moving towards the end B with a velocity urel with respect to the trolley. The length of the trolley is L.
Choose the correct statement
The figure shows a man of mass m standing at the end A of a trolley of mass M placed at rest on a smooth horizontal surface. The man starts moving towards the end B with a velocity urel with respect to the trolley. The length of the trolley is L.
Choose the correct statement
physics-General
physics-
The figure shows a man of mass m standing at the end A of a trolley of mass M placed at rest on a smooth horizontal surface. The man starts moving towards the end B with a velocity urel with respect to the trolley. The length of the trolley is L.
The distance moved by the man with respect to ground is
The figure shows a man of mass m standing at the end A of a trolley of mass M placed at rest on a smooth horizontal surface. The man starts moving towards the end B with a velocity urel with respect to the trolley. The length of the trolley is L.
The distance moved by the man with respect to ground is
physics-General
physics-
The figure shows a man of mass m standing at the end A of a trolley of mass M placed at rest on a smooth horizontal surface. The man starts moving towards the end B with a velocity urel with respect to the trolley. The length of the trolley is L.
When the man reaches the end B, the distance moved by the trolley with respect to ground is
The figure shows a man of mass m standing at the end A of a trolley of mass M placed at rest on a smooth horizontal surface. The man starts moving towards the end B with a velocity urel with respect to the trolley. The length of the trolley is L.
When the man reaches the end B, the distance moved by the trolley with respect to ground is
physics-General
physics-
The figure shows a man of mass m standing at the end A of a trolley of mass M placed at rest on a smooth horizontal surface. The man starts moving towards the end B with a velocity urel with respect to the trolley. The length of the trolley is L.
As the man walks on the trolley, the centre of mass of the system (man + trolley)
The figure shows a man of mass m standing at the end A of a trolley of mass M placed at rest on a smooth horizontal surface. The man starts moving towards the end B with a velocity urel with respect to the trolley. The length of the trolley is L.
As the man walks on the trolley, the centre of mass of the system (man + trolley)
physics-General