Physics-
General
Easy

Question

The distance between plates of a parallel plate capacitor is 5d. Let the positively charged plate is at x=0 and negatively charged plate is at x=5d. Two slabs one of conductor and other of a dielectric of equal thickness d are inserted between the plates as shown in figure. Potential versus distance graph will look like :

  1.    
  2.    
  3.    
  4.    

The correct answer is:

Related Questions to study

General
Physics-

A uniform cube of side ‘b’ and mass M rest on a rough horizontal table. A horizontal force F is applied normal to one of the face at a point, at a height 3 b over 4 above the base. What should be the coefficient of friction (m) between cube and table so that is will tip about an edge before it starts slipping?

A uniform cube of side ‘b’ and mass M rest on a rough horizontal table. A horizontal force F is applied normal to one of the face at a point, at a height 3 b over 4 above the base. What should be the coefficient of friction (m) between cube and table so that is will tip about an edge before it starts slipping?

Physics-General
General
physics-

Four open organ pipes of different lengths and different gases at same temperature as shown in figure. text Let  end text f subscript A end subscript comma f subscript B end subscript comma f subscript C end subscript text  and  end text f subscript D end subscript text  be end text their fundamental frequencies then : [Take open gamma subscript C O subscript 2 end subscript end subscript equals 7 divided by 5 close square brackets

Four open organ pipes of different lengths and different gases at same temperature as shown in figure. text Let  end text f subscript A end subscript comma f subscript B end subscript comma f subscript C end subscript text  and  end text f subscript D end subscript text  be end text their fundamental frequencies then : [Take open gamma subscript C O subscript 2 end subscript end subscript equals 7 divided by 5 close square brackets

physics-General
General
physics-

A narrow tube is bent in the form of a circle of radius R, as shown in the figure. Two small holes S and D are made in the tube at the positions right angle to each other. A source placed at S generated a wave of intensity I0 which is equally divided into two parts : One part travels along the longer path, while the other travels along the shorter path. Both the part waves meet at the point D where a detector is placed. The maximum value of l to produce a minima at D is given by

A narrow tube is bent in the form of a circle of radius R, as shown in the figure. Two small holes S and D are made in the tube at the positions right angle to each other. A source placed at S generated a wave of intensity I0 which is equally divided into two parts : One part travels along the longer path, while the other travels along the shorter path. Both the part waves meet at the point D where a detector is placed. The maximum value of l to produce a minima at D is given by

physics-General
parallel
General
physics-

A narrow tube is bent in the form of a circle of radius R, as shown in the figure. Two small holes S and D are made in the tube at the positions right angle to each other. A source placed at S generated a wave of intensity I0 which is equally divided into two parts: One-part travels along the longer path, while the other travels along the shorter path. Both the part waves meet at the point D where a detector is placed. The maximum value of l to produce a maxim at D is given by

A narrow tube is bent in the form of a circle of radius R, as shown in the figure. Two small holes S and D are made in the tube at the positions right angle to each other. A source placed at S generated a wave of intensity I0 which is equally divided into two parts: One-part travels along the longer path, while the other travels along the shorter path. Both the part waves meet at the point D where a detector is placed. The maximum value of l to produce a maxim at D is given by

physics-General
General
physics-

A narrow tube is bent in the form of a circle of radius R, as shown in the figure. Two small holes S and D are made in the tube at the positions right angle to each other. A source placed at S generated a wave of intensity I0 which is equally divided into two parts : One part travels along the longer path, while the other travels along the shorter path. Both the part waves meet at the point D where a detector is placed. The maximum intensity produced at D is given by

A narrow tube is bent in the form of a circle of radius R, as shown in the figure. Two small holes S and D are made in the tube at the positions right angle to each other. A source placed at S generated a wave of intensity I0 which is equally divided into two parts : One part travels along the longer path, while the other travels along the shorter path. Both the part waves meet at the point D where a detector is placed. The maximum intensity produced at D is given by

physics-General
General
physics-

A narrow tube is bent in the form of a circle of radius R, as shown in the figure. Two small holes S and D are made in the tube at the positions right angle to each other. A source placed at S generated a wave of intensity I0 which is equally divided into two parts : One part travels along the longer path, while the other travels along the shorter path. Both the part waves meet at the point D where a detector is placed. If the minima is formed at the detector then, the magnitude of wavelength lambda of the wave produced is given by

A narrow tube is bent in the form of a circle of radius R, as shown in the figure. Two small holes S and D are made in the tube at the positions right angle to each other. A source placed at S generated a wave of intensity I0 which is equally divided into two parts : One part travels along the longer path, while the other travels along the shorter path. Both the part waves meet at the point D where a detector is placed. If the minima is formed at the detector then, the magnitude of wavelength lambda of the wave produced is given by

physics-General
parallel
General
physics-

A narrow tube is bent in the form of a circle of radius R, as shown in the figure. Two small holes S and D are made in the tube at the positions right angle to each other. A source placed at S generated a wave of intensity I0 which is equally divided into two parts : One part travels along the longer path, while the other travels along the shorter path. Both the part waves meet at the point D where a detector is placed. If a maximum is formed at the detector, then, the magnitude of wavelength l of the wave produced is given by

A narrow tube is bent in the form of a circle of radius R, as shown in the figure. Two small holes S and D are made in the tube at the positions right angle to each other. A source placed at S generated a wave of intensity I0 which is equally divided into two parts : One part travels along the longer path, while the other travels along the shorter path. Both the part waves meet at the point D where a detector is placed. If a maximum is formed at the detector, then, the magnitude of wavelength l of the wave produced is given by

physics-General
General
physics-

The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure. The points of maximum rarefaction are

The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure. The points of maximum rarefaction are

physics-General
General
physics-

The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure. The points of maximum compression are

The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure. The points of maximum compression are

physics-General
parallel
General
physics-

The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure. The maximum displaced points are

The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure. The maximum displaced points are

physics-General
General
physics-

The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure. The stationary points are

The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure. The stationary points are

physics-General
General
physics-

The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure. The points moving opposite to the direction of propagation are

The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure. The points moving opposite to the direction of propagation are

physics-General
parallel
General
physics-

The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure. The points moving in the direction of wave are

The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure. The points moving in the direction of wave are

physics-General
General
physics-

Which of the following statements are wrong about the velocity of sound in air

Which of the following statements are wrong about the velocity of sound in air

physics-General
General
physics-

Figure, shows a stationary wave between two fixed points P and Q. Which point(s) of 1, 2 and 3 are in phase with the point X?

Figure, shows a stationary wave between two fixed points P and Q. Which point(s) of 1, 2 and 3 are in phase with the point X?

physics-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.