Physics-
General
Easy
Question
The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure.
The points moving in the direction of wave are
- b
- c
- f
- i
The correct answer is: c
Related Questions to study
physics-
Figure, shows a stationary wave between two fixed points P and Q. Which point(s) of 1, 2 and 3 are in phase with the point X?
Figure, shows a stationary wave between two fixed points P and Q. Which point(s) of 1, 2 and 3 are in phase with the point X?
physics-General
Physics-
A string is fixed at both ends vibrates in a resonant mode with a separation 2.0 cm between the consecutive nodes. For the next higher resonant frequency, this separation is reduced to 1.6 cm. The length of the string is
A string is fixed at both ends vibrates in a resonant mode with a separation 2.0 cm between the consecutive nodes. For the next higher resonant frequency, this separation is reduced to 1.6 cm. The length of the string is
Physics-General
physics-
The figure represents the instantaneous picture of a transverse harmonic wave traveling along the negative x-axis. Choose the correct alternative(s) related to the movement of the nine points shown in the figure.
The points moving downwards is/are
The figure represents the instantaneous picture of a transverse harmonic wave traveling along the negative x-axis. Choose the correct alternative(s) related to the movement of the nine points shown in the figure.
The points moving downwards is/are
physics-General
physics-
A detector is released from rest over a source of sound of frequency f0= 103 Hz. The frequency observed by the detector at time t is plotted in the graph. The speed of sound in air is (g = 10 m/s2)
A detector is released from rest over a source of sound of frequency f0= 103 Hz. The frequency observed by the detector at time t is plotted in the graph. The speed of sound in air is (g = 10 m/s2)
physics-General
physics-
A stationary sound source 's' of frequency 334 Hz and a stationary observer 'O' are placed near a reflecting surface moving away from the source with velocity 2 m/sec as shown in the figure. If the velocity of the sound waves is air is V = 330 m/sec, the apparent frequency of the echo is
A stationary sound source 's' of frequency 334 Hz and a stationary observer 'O' are placed near a reflecting surface moving away from the source with velocity 2 m/sec as shown in the figure. If the velocity of the sound waves is air is V = 330 m/sec, the apparent frequency of the echo is
physics-General
physics-
Consider two sound sources S1 and S2 having same frequency 100Hz and the observer O located between them as shown in the fig. All the three are moving with same velocity in same direction. The beat frequency of the observer is
Consider two sound sources S1 and S2 having same frequency 100Hz and the observer O located between them as shown in the fig. All the three are moving with same velocity in same direction. The beat frequency of the observer is
physics-General
Physics-
In a test of subsonic Jet flies over head at an altitude of 100 m. The sound intensity on the ground as the Jet passes overhead is 160 dB. At what altitude should the plane fly so that the ground noise is not greater than 120 dB.
In a test of subsonic Jet flies over head at an altitude of 100 m. The sound intensity on the ground as the Jet passes overhead is 160 dB. At what altitude should the plane fly so that the ground noise is not greater than 120 dB.
Physics-General
Physics-
The ratio of intensities between two coherent sound sources is 4 : 1. The difference of loudness in dB between maximum and minimum intensities when they interfere in space is:
The ratio of intensities between two coherent sound sources is 4 : 1. The difference of loudness in dB between maximum and minimum intensities when they interfere in space is:
Physics-General
physics-
A person standing at a distance of 6 m from a source of sound receives sound wave in two ways, one directly from the source and other after reflection from a rigid boundary as shown in the figure. The maximum wavelength for which, the person will receive maximum sound intensity, is
A person standing at a distance of 6 m from a source of sound receives sound wave in two ways, one directly from the source and other after reflection from a rigid boundary as shown in the figure. The maximum wavelength for which, the person will receive maximum sound intensity, is
physics-General
physics-
A wave pulse on a string has the dimension shown in figure. The waves speed is v = 1 cm/s. If point O is a free end. The shape of wave at time t = 3 s is :
A wave pulse on a string has the dimension shown in figure. The waves speed is v = 1 cm/s. If point O is a free end. The shape of wave at time t = 3 s is :
physics-General
physics-
A pulse shown here is reflected from the rigid wall A and then from free end B. The shape of the string after these 2 reflection will be
A pulse shown here is reflected from the rigid wall A and then from free end B. The shape of the string after these 2 reflection will be
physics-General
physics-
A block of mass 1 kg is hanging vertically from a string of length 1 m and mass/length = 0.001 Kg/m. A small pulse is generated at its lower end. The pulse reaches the top end in approximately
A block of mass 1 kg is hanging vertically from a string of length 1 m and mass/length = 0.001 Kg/m. A small pulse is generated at its lower end. The pulse reaches the top end in approximately
physics-General
physics-
Figure shown the shape of part of a long string in which transverse waves are produced by attaching one end of the string to tuning fork of frequency 250 Hz. What is the velocity of the waves?
Figure shown the shape of part of a long string in which transverse waves are produced by attaching one end of the string to tuning fork of frequency 250 Hz. What is the velocity of the waves?
physics-General
Physics-
The equation of a wave travelling along the positive x-axis, as shown in figure at t = 0 is given by
The equation of a wave travelling along the positive x-axis, as shown in figure at t = 0 is given by
Physics-General
physics-
The magnetic dipole m is placed parallel to an infinitely long straight wire as shown in figure
The magnetic dipole m is placed parallel to an infinitely long straight wire as shown in figure
physics-General