Physics-
General
Easy
Question
The figure shows a man of mass m standing at the end A of a trolley of mass M placed at rest on a smooth horizontal surface. The man starts moving towards the end B with a velocity urel with respect to the trolley. The length of the trolley is L.
The time taken by the man to reach the other end is
-
-
-
- none of these
The correct answer is:
Related Questions to study
physics-
The figure shows a man of mass m standing at the end A of a trolley of mass M placed at rest on a smooth horizontal surface. The man starts moving towards the end B with a velocity urel with respect to the trolley. The length of the trolley is L.
The velocity of the man with respect to ground v1 will be
The figure shows a man of mass m standing at the end A of a trolley of mass M placed at rest on a smooth horizontal surface. The man starts moving towards the end B with a velocity urel with respect to the trolley. The length of the trolley is L.
The velocity of the man with respect to ground v1 will be
physics-General
physics-
The figure shows a man of mass m standing at the end A of a trolley of mass M placed at rest on a smooth horizontal surface. The man starts moving towards the end B with a velocity urel with respect to the trolley. The length of the trolley is L.
When the man starts moving, then the velocity of the trolley v2 with respect to ground will be
The figure shows a man of mass m standing at the end A of a trolley of mass M placed at rest on a smooth horizontal surface. The man starts moving towards the end B with a velocity urel with respect to the trolley. The length of the trolley is L.
When the man starts moving, then the velocity of the trolley v2 with respect to ground will be
physics-General
physics-
A 4-kilogram disk slides over level ice toward the east at a velocity of 1meter per second, as shown. The disk strikes a post and rebounds toward the north at the same speed. The change in the magnitude of the eastward component of the momentum of the disk is
A 4-kilogram disk slides over level ice toward the east at a velocity of 1meter per second, as shown. The disk strikes a post and rebounds toward the north at the same speed. The change in the magnitude of the eastward component of the momentum of the disk is
physics-General
physics-
A ball of mass m = 60gm is shot with speed v0 = 22m/s into the barrel of spring gun of mass M = 240g initially at rest on a frictionless surface. The ball sticks in the barrel at the point of maximum compression of the spring.
What fraction of initial kinetic energy of the ball is now stored in the spring?
A ball of mass m = 60gm is shot with speed v0 = 22m/s into the barrel of spring gun of mass M = 240g initially at rest on a frictionless surface. The ball sticks in the barrel at the point of maximum compression of the spring.
What fraction of initial kinetic energy of the ball is now stored in the spring?
physics-General
physics-
A ball of mass m = 60gm is shot with speed v0 = 22m/s into the barrel of spring gun of mass M = 240g initially at rest on a frictionless surface. The ball sticks in the barrel at the point of maximum compression of the spring.
The speed of the spring gun after the ball stops relative to the barrel, is
A ball of mass m = 60gm is shot with speed v0 = 22m/s into the barrel of spring gun of mass M = 240g initially at rest on a frictionless surface. The ball sticks in the barrel at the point of maximum compression of the spring.
The speed of the spring gun after the ball stops relative to the barrel, is
physics-General
physics-
A small ball B of mass m is suspended with light inelastic string of length L from a block A of same mass m which can move on smooth horizontal surface as shown in the figure. The ball is displaced by angle from equilibrium position & then released.
The displacement of centre of mass of A + B system till the string becomes vertical is
A small ball B of mass m is suspended with light inelastic string of length L from a block A of same mass m which can move on smooth horizontal surface as shown in the figure. The ball is displaced by angle from equilibrium position & then released.
The displacement of centre of mass of A + B system till the string becomes vertical is
physics-General
physics-
A small ball B of mass m is suspended with light inelastic string of length L from a block A of same mass m which can move on smooth horizontal surface as shown in the figure. The ball is displaced by angle from equilibrium position & then released.
Maximum velocity of block during subsequent motion of the system after release of ball is
A small ball B of mass m is suspended with light inelastic string of length L from a block A of same mass m which can move on smooth horizontal surface as shown in the figure. The ball is displaced by angle from equilibrium position & then released.
Maximum velocity of block during subsequent motion of the system after release of ball is
physics-General
physics-
A small ball B of mass m is suspended with light inelastic string of length L from a block A of same mass m which can move on smooth horizontal surface as shown in the figure. The ball is displaced by angle from equilibrium position & then released.
Tension in string when it is vertical, is
A small ball B of mass m is suspended with light inelastic string of length L from a block A of same mass m which can move on smooth horizontal surface as shown in the figure. The ball is displaced by angle from equilibrium position & then released.
Tension in string when it is vertical, is
physics-General
physics-
A small ball B of mass m is suspended with light inelastic string of length L from a block A of same mass m which can move on smooth horizontal surface as shown in the figure. The ball is displaced by angle from equilibrium position & then released.
The displacement of block when ball reaches the equilibrium position is
A small ball B of mass m is suspended with light inelastic string of length L from a block A of same mass m which can move on smooth horizontal surface as shown in the figure. The ball is displaced by angle from equilibrium position & then released.
The displacement of block when ball reaches the equilibrium position is
physics-General
physics-
A block of mass m starts from rest and slides down a frictionless semi–circular track from a height h as shown. When it reaches the lowest point of the track, it collides with a stationary piece of putty also having mass m. If the block and the putty stick together and continue to slide, the maximum height that the block-putty system could reach is:
A block of mass m starts from rest and slides down a frictionless semi–circular track from a height h as shown. When it reaches the lowest point of the track, it collides with a stationary piece of putty also having mass m. If the block and the putty stick together and continue to slide, the maximum height that the block-putty system could reach is:
physics-General
Physics-
Three blocks are initially placed as shown in the figure. Block A has mass m and initial velocity v to the right. Block B with mass m and block C with mass 4m are both initially at rest. Neglect friction. All collisions are elastic. The final velocity of block A is
Three blocks are initially placed as shown in the figure. Block A has mass m and initial velocity v to the right. Block B with mass m and block C with mass 4m are both initially at rest. Neglect friction. All collisions are elastic. The final velocity of block A is
Physics-General
physics-
A ball of mass m is released from A inside a smooth wedge of mass m as shown in the figure. What is the speed of the wedge when the ball reaches point B?
A ball of mass m is released from A inside a smooth wedge of mass m as shown in the figure. What is the speed of the wedge when the ball reaches point B?
physics-General
physics-
A small ball falling vertically downward with constant velocity 4m/s strikes elastically a massive inclined cart moving with velocity 4m/s horizontally as shown. The velocity of the rebound of the ball is
A small ball falling vertically downward with constant velocity 4m/s strikes elastically a massive inclined cart moving with velocity 4m/s horizontally as shown. The velocity of the rebound of the ball is
physics-General
physics-
A ball of mass m falls vertically from a height h and collides with a block of equal mass m moving horizontally with a velocity v on a surface. The coefficient of kinetic friction between the block and the surface is 0.2, while the coefficient of restitution e between the ball and the block is 0.5. There is no friction acting between the ball and the block. The velocity of the block decreases by
A ball of mass m falls vertically from a height h and collides with a block of equal mass m moving horizontally with a velocity v on a surface. The coefficient of kinetic friction between the block and the surface is 0.2, while the coefficient of restitution e between the ball and the block is 0.5. There is no friction acting between the ball and the block. The velocity of the block decreases by
physics-General
physics-
Two masses A and B of mass M and 2M respectively are connected by a compressed ideal spring. The system is placed on a horizontal frictionless table and given a velocity u in the z-direction as shown in the figure. The spring is then released. In the subsequent motion the line from B to A always points along the unit vector. At some instant of time mass B has a x-component of velocity as The velocity of as A at that instant is
Two masses A and B of mass M and 2M respectively are connected by a compressed ideal spring. The system is placed on a horizontal frictionless table and given a velocity u in the z-direction as shown in the figure. The spring is then released. In the subsequent motion the line from B to A always points along the unit vector. At some instant of time mass B has a x-component of velocity as The velocity of as A at that instant is
physics-General