Physics-
General
Easy

Question

The length of the wire shown in figure between the pulley is 1.5m and its mass is 12 gm. Find the frequency of vibration with which the wire vibrates in two loops leaving the middle point of the wire between the pulleys at rest

  1. 35 Hz    
  2. 40 Hz    
  3. 70 Hz    
  4. 80 Hz    

The correct answer is: 70 Hz

Related Questions to study

General
physics-

In a sonometer wire, the tension is maintained by suspending a 20kg mass from the free end of the wire. The fundamental frequency of vibration is 300 Hz

If the tension is provided by two masses of 6kg and 14kg suspended from a pulley as show in the figure the fundamental frequency will

In a sonometer wire, the tension is maintained by suspending a 20kg mass from the free end of the wire. The fundamental frequency of vibration is 300 Hz

If the tension is provided by two masses of 6kg and 14kg suspended from a pulley as show in the figure the fundamental frequency will

physics-General
General
physics-

A train A crosses a station with a speed of 40 m/s and whistles a short pulse of natural frequency n subscript 0 end subscript equals 596 H z. Another train B is approaching towards the same station with the same speed along a parallel track. Two tracks are d = 99m apart. When train A whistles, train B is 152m away from the station as shown in fig. If velocity of sound in air v m s = 330 / , calculate frequency of the pulse heard by driver of train B

A train A crosses a station with a speed of 40 m/s and whistles a short pulse of natural frequency n subscript 0 end subscript equals 596 H z. Another train B is approaching towards the same station with the same speed along a parallel track. Two tracks are d = 99m apart. When train A whistles, train B is 152m away from the station as shown in fig. If velocity of sound in air v m s = 330 / , calculate frequency of the pulse heard by driver of train B

physics-General
General
physics-

Two tuning forks P and Q are vibrated together. The number of beats produced are represented by the straight line OA in the following graph. After loading Q with wax again these are vibrated together and the beats produced are represented by the line OB. If the frequency of P is 341 Hz, the frequency of Q will be ___

Two tuning forks P and Q are vibrated together. The number of beats produced are represented by the straight line OA in the following graph. After loading Q with wax again these are vibrated together and the beats produced are represented by the line OB. If the frequency of P is 341 Hz, the frequency of Q will be ___

physics-General
parallel
General
physics-

conditions of the experiment the velocity of sound in hydrogen is 1100 m/s and oxygen 300 m/s)

conditions of the experiment the velocity of sound in hydrogen is 1100 m/s and oxygen 300 m/s)

physics-General
General
physics-

A heavy but uniform rope of length L is suspended from a ceiling

A particle is dropped from the ceiling at the same instant the bottom end is given the jerk. where will the particle meet the pulse measured from bottom?

A heavy but uniform rope of length L is suspended from a ceiling

A particle is dropped from the ceiling at the same instant the bottom end is given the jerk. where will the particle meet the pulse measured from bottom?

physics-General
General
physics-

A heavy but uniform rope of length L is suspended from a ceiling

If the rope is given a sudden sideways jerk at the bottom, how long will it take for the pulse to reach the ceiling?

A heavy but uniform rope of length L is suspended from a ceiling

If the rope is given a sudden sideways jerk at the bottom, how long will it take for the pulse to reach the ceiling?

physics-General
parallel
General
physics-

A heavy but uniform rope of length L is suspended from a ceiling

Find the velocity of transverse wave travelling on the string as a funcition of the distance(x) from the lower end

A heavy but uniform rope of length L is suspended from a ceiling

Find the velocity of transverse wave travelling on the string as a funcition of the distance(x) from the lower end

physics-General
General
physics-

Two speakers S1 & S2 driven by the same amplifiers are placed at y=1m and y=-1m. The speakers vibrate in phase at 600 Hz. A man stands at a point on x-axis at a very large distance form the origin and starts moving parallel to y-axis. The speed of sound in air is 330 m/s

If he continous to walk along the same line how many more maxima can he hear

Two speakers S1 & S2 driven by the same amplifiers are placed at y=1m and y=-1m. The speakers vibrate in phase at 600 Hz. A man stands at a point on x-axis at a very large distance form the origin and starts moving parallel to y-axis. The speed of sound in air is 330 m/s

If he continous to walk along the same line how many more maxima can he hear

physics-General
General
physics-

Two speakers S1 & S2 driven by the same amplifiers are placed at y=1m and y=-1m. The speakers vibrate in phase at 600 Hz. A man stands at a point on x-axis at a very large distance form the origin and starts moving parallel to y-axis. The speed of sound in air is 330 m/s

The angle theta at which he will hear maximum intensity for first time?

Two speakers S1 & S2 driven by the same amplifiers are placed at y=1m and y=-1m. The speakers vibrate in phase at 600 Hz. A man stands at a point on x-axis at a very large distance form the origin and starts moving parallel to y-axis. The speed of sound in air is 330 m/s

The angle theta at which he will hear maximum intensity for first time?

physics-General
parallel
General
physics-

Two speakers S1 & S2 driven by the same amplifiers are placed at y=1m and y=-1m. The speakers vibrate in phase at 600 Hz. A man stands at a point on x-axis at a very large distance form the origin and starts moving parallel to y-axis. The speed of sound in air is 330 m/s

The angle theta at which intensity of sound drop to a minimum for the first time

Two speakers S1 & S2 driven by the same amplifiers are placed at y=1m and y=-1m. The speakers vibrate in phase at 600 Hz. A man stands at a point on x-axis at a very large distance form the origin and starts moving parallel to y-axis. The speed of sound in air is 330 m/s

The angle theta at which intensity of sound drop to a minimum for the first time

physics-General
General
physics-

When a composite wire is made by joining two wires as shown in figure and possible frequencies of this wire is asked (both ends fixed) then the lowest frequency is that at which individual lowest frequencies of the two wires are equal

In the figure given: l subscript 1 end subscript equals l subscript 2 end subscript equals l comma mu subscript 1 end subscript equals fraction numerator mu subscript 2 end subscript over denominator 9 end fraction equals mu The lowest frequency such that the junction is an antinode is

When a composite wire is made by joining two wires as shown in figure and possible frequencies of this wire is asked (both ends fixed) then the lowest frequency is that at which individual lowest frequencies of the two wires are equal

In the figure given: l subscript 1 end subscript equals l subscript 2 end subscript equals l comma mu subscript 1 end subscript equals fraction numerator mu subscript 2 end subscript over denominator 9 end fraction equals mu The lowest frequency such that the junction is an antinode is

physics-General
General
physics-

When a composite wire is made by joining two wires as shown in figure and possible frequencies of this wire is asked (both ends fixed) then the lowest frequency is that at which individual lowest frequencies of the two wires are equal

In the figure given: l subscript 1 end subscript equals l subscript 2 end subscript equals l comma mu subscript 1 end subscript equals fraction numerator mu subscript 2 end subscript over denominator 9 end fraction equals mu The lowest frequency such that the junction is a node is

When a composite wire is made by joining two wires as shown in figure and possible frequencies of this wire is asked (both ends fixed) then the lowest frequency is that at which individual lowest frequencies of the two wires are equal

In the figure given: l subscript 1 end subscript equals l subscript 2 end subscript equals l comma mu subscript 1 end subscript equals fraction numerator mu subscript 2 end subscript over denominator 9 end fraction equals mu The lowest frequency such that the junction is a node is

physics-General
parallel
General
physics-

Transverse waves are produced in a long string by attaching its free end to a vibrating tuning fork Figure shows the shape of a part of the string The points in phase are

Transverse waves are produced in a long string by attaching its free end to a vibrating tuning fork Figure shows the shape of a part of the string The points in phase are

physics-General
General
physics-

At any instant a wave travelling along the string is shown in figure Here, if point A is moving upward, the true statement is

At any instant a wave travelling along the string is shown in figure Here, if point A is moving upward, the true statement is

physics-General
General
physics-

During propagation of longitudinal plane wave in a medium the two particles separated by a distance equivalent to one wavelength at an instant will be/have

During propagation of longitudinal plane wave in a medium the two particles separated by a distance equivalent to one wavelength at an instant will be/have

physics-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.