Physics-
General
Easy
Question
Two charged particle A and B each of charge +e and masses 12 amu and 13 amu respectively follow a circular trajectory in chamber X after the velocity selector as shown in the figure. Both particles enter the velocity selector with speed 1.5 × 106 ms–1. A uniform magnetic field of strength 1.0 T is maintained within the chamber X and in the velocity selector.
- Electric field across the conducting plate of the velocity selector is – 106 NC–1
- Electric field across the conducting plate of the velocity selector is 106 NC–1
- The ratio of the radii of the circular paths for the two particles is 12/13.
- The ratio of the radii of the circular paths for the two particles is 13/12.
The correct answer is: The ratio of the radii of the circular paths for the two particles is 12/13.
Related Questions to study
Physics-
A wire carrying I is shaped as shown. Section AB is a quarter circle of radius r. The magnetic field at C is directed
A wire carrying I is shaped as shown. Section AB is a quarter circle of radius r. The magnetic field at C is directed
Physics-General
Physics-
Three ions H+, He+ and O+2 having same kinetic energy pass through a region in which there is a uniform magnetic field perpendicular to their velocity, then :
Three ions H+, He+ and O+2 having same kinetic energy pass through a region in which there is a uniform magnetic field perpendicular to their velocity, then :
Physics-General
physics-
Figure shows a square current carrying loop ABCD of side 10 cm and current i = 10A. The magnetic moment r of the loop is
Figure shows a square current carrying loop ABCD of side 10 cm and current i = 10A. The magnetic moment r of the loop is
physics-General
physics-
A straight current carrying conductor is placed in such a way that the current in the conductor flows in the direction out of the plane of the paper. The conductor is placed between two poles of two magnets, as shown. The conductor will experience a force in the direction towards
A straight current carrying conductor is placed in such a way that the current in the conductor flows in the direction out of the plane of the paper. The conductor is placed between two poles of two magnets, as shown. The conductor will experience a force in the direction towards
physics-General
physics-
A rectangular coil PQ has 2n turns, an area 2a and carries a current 2I, (refer figure). The plane of the coil is at 60° to a horizontal uniform magnetic field of flux density B. The torque on the coil due to magnetic force is
A rectangular coil PQ has 2n turns, an area 2a and carries a current 2I, (refer figure). The plane of the coil is at 60° to a horizontal uniform magnetic field of flux density B. The torque on the coil due to magnetic force is
physics-General
physics-
A thin non conducting disc of radius R is rotating clockwise (see figure) with an angular velocity w about its central axis, which is perpendicular to its plane. Both its surfaces carry +ve charges of uniform surface density. Half the disc is in a region of a uniform, unidirectional magnetic field B parallel to the plane of the disc, as shown. Then,
A thin non conducting disc of radius R is rotating clockwise (see figure) with an angular velocity w about its central axis, which is perpendicular to its plane. Both its surfaces carry +ve charges of uniform surface density. Half the disc is in a region of a uniform, unidirectional magnetic field B parallel to the plane of the disc, as shown. Then,
physics-General
Physics-
The magnetic moment of a circular orbit of radius ‘r’ carrying a charge ‘q’ and rotating with velocity v is given by
The magnetic moment of a circular orbit of radius ‘r’ carrying a charge ‘q’ and rotating with velocity v is given by
Physics-General
physics-
In the figure shown a coil of single turn is wound on a sphere of radius R and mass m. The plane of the coil is parallel to the plane and lies in the equatorial plane of the sphere. Current in the coil is i. The value of B if the sphere is in equilibrium is
In the figure shown a coil of single turn is wound on a sphere of radius R and mass m. The plane of the coil is parallel to the plane and lies in the equatorial plane of the sphere. Current in the coil is i. The value of B if the sphere is in equilibrium is
physics-General
physics-
A conducting ring of mass 2 kg and radius 0.5 m is placed on a smooth horizontal plane. The ring carries a current i = 4A. A horizontal magnetic field B = 10T is switched on at time t = 0 as shown in figure. The initial angular acceleration of the ring will be
A conducting ring of mass 2 kg and radius 0.5 m is placed on a smooth horizontal plane. The ring carries a current i = 4A. A horizontal magnetic field B = 10T is switched on at time t = 0 as shown in figure. The initial angular acceleration of the ring will be
physics-General
physics-
In given figure, X and Y are two long straight parallel conductors each carrying a current of 2 A. The force on each conductor is F newtons. When the current in each is changed to 1 A and reversed in direction, the force on each is now
In given figure, X and Y are two long straight parallel conductors each carrying a current of 2 A. The force on each conductor is F newtons. When the current in each is changed to 1 A and reversed in direction, the force on each is now
physics-General
physics-
A square loop ABCD, carrying a current i, is placed near and coplanar with a long straight conductor XY carrying a current I, the net force on the loop will be
A square loop ABCD, carrying a current i, is placed near and coplanar with a long straight conductor XY carrying a current I, the net force on the loop will be
physics-General
physics-
In the figure shown a current I1 is established in the long straight wire AB. Another wire CD carrying current I2 is placed in the plane of the paper. The line joining the ends of this wire is perpendicular to the wire AB. The force on the wire CD is:
In the figure shown a current I1 is established in the long straight wire AB. Another wire CD carrying current I2 is placed in the plane of the paper. The line joining the ends of this wire is perpendicular to the wire AB. The force on the wire CD is:
physics-General
physics-
A circular current loop of radius a is placed in a radial field B as shown. The net force acting on the loop is
A circular current loop of radius a is placed in a radial field B as shown. The net force acting on the loop is
physics-General
physics-
A semi circular current carrying wire having radius R is placed in x-y plane with its centre at origin ‘O’. There is non-uniform magnetic field (here Bo is +ve constant) is existing in the region. The magnetic force acting on semi circular wire will be along
A semi circular current carrying wire having radius R is placed in x-y plane with its centre at origin ‘O’. There is non-uniform magnetic field (here Bo is +ve constant) is existing in the region. The magnetic force acting on semi circular wire will be along
physics-General
physics-
A conducting wire bent in the form of a parabola y2 = 2x carries a current i = 2 A as shown in figure. This wire is placed in a uniform magnetic field Tesla. The magnetic force on the wire is (in newton)
A conducting wire bent in the form of a parabola y2 = 2x carries a current i = 2 A as shown in figure. This wire is placed in a uniform magnetic field Tesla. The magnetic force on the wire is (in newton)
physics-General