Physics-
General
Easy
Question
What should be the minimum force P to be applied to the string so that block of mass m just begins to move up the frictionless plane.
-
-
-
- None
The correct answer is:
Related Questions to study
physics-
The equation of a wave disturbance is given as : where x and y are in meters and t in seconds. Choose the wrong statement:
The equation of a wave disturbance is given as : where x and y are in meters and t in seconds. Choose the wrong statement:
physics-General
physics-
Four open organ pipes of different lengths and different gases at same temperature as shown in figure. Let fA , fB , fC and fD be their fundamental frequencies then :[Take ]
Four open organ pipes of different lengths and different gases at same temperature as shown in figure. Let fA , fB , fC and fD be their fundamental frequencies then :[Take ]
physics-General
physics-
A narrow tube is bent in the form of a circle of radius R, as shown in the figure. Two small holes S and D are made in the tube at the positions right angle to each other. A source placed at S generated a wave of intensity I0 which is equally divided into two parts : One part travels along the longer path, while the other travels along the shorter path. Both the part waves meet at the point D where a detector is placed
The maximum value of l to produce a minima at D is given by
A narrow tube is bent in the form of a circle of radius R, as shown in the figure. Two small holes S and D are made in the tube at the positions right angle to each other. A source placed at S generated a wave of intensity I0 which is equally divided into two parts : One part travels along the longer path, while the other travels along the shorter path. Both the part waves meet at the point D where a detector is placed
The maximum value of l to produce a minima at D is given by
physics-General
physics-
A narrow tube is bent in the form of a circle of radius R, as shown in the figure. Two small holes S and D are made in the tube at the positions right angle to each other. A source placed at S generated a wave of intensity I0 which is equally divided into two parts : One part travels along the longer path, while the other travels along the shorter path. Both the part waves meet at the point D where a detector is placed
The maximum value of to produce a maxima at D is given by
A narrow tube is bent in the form of a circle of radius R, as shown in the figure. Two small holes S and D are made in the tube at the positions right angle to each other. A source placed at S generated a wave of intensity I0 which is equally divided into two parts : One part travels along the longer path, while the other travels along the shorter path. Both the part waves meet at the point D where a detector is placed
The maximum value of to produce a maxima at D is given by
physics-General
physics-
A narrow tube is bent in the form of a circle of radius R, as shown in the figure. Two small holes S and D are made in the tube at the positions right angle to each other. A source placed at S generated a wave of intensity I0 which is equally divided into two parts : One part travels along the longer path, while the other travels along the shorter path. Both the part waves meet at the point D where a detector is placed
The maximum intensity produced at D is given by
A narrow tube is bent in the form of a circle of radius R, as shown in the figure. Two small holes S and D are made in the tube at the positions right angle to each other. A source placed at S generated a wave of intensity I0 which is equally divided into two parts : One part travels along the longer path, while the other travels along the shorter path. Both the part waves meet at the point D where a detector is placed
The maximum intensity produced at D is given by
physics-General
physics-
The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure The points of maximum rarefaction are
The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure The points of maximum rarefaction are
physics-General
physics-
The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure The stationary points are
The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure The stationary points are
physics-General
physics-
The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure The points moving opposite to the direction of propagation are
The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure The points moving opposite to the direction of propagation are
physics-General
physics-
The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure.
The points moving in the direction of wave are
The figure represents the instantaneous picture of a longitudinal harmonic wave travelling along the negative x-axis. Identify the correct statement(s) related to the movement of the points shown in the figure.
The points moving in the direction of wave are
physics-General
physics-
Figure, shows a stationary wave between two fixed points P and Q. Which point(s) of 1, 2 and 3 are in phase with the point X?
Figure, shows a stationary wave between two fixed points P and Q. Which point(s) of 1, 2 and 3 are in phase with the point X?
physics-General
physics-
The figure represents the instantaneous picture of a transverse harmonic wave traveling along the negative x-axis. Choose the correct alternative(s) related to the movement of the nine points shown in the figure.
The points moving downwards is/are
The figure represents the instantaneous picture of a transverse harmonic wave traveling along the negative x-axis. Choose the correct alternative(s) related to the movement of the nine points shown in the figure.
The points moving downwards is/are
physics-General
physics-
A sinusoidal progressive wave is generated in a string. It’s equation is given by y = (2 mm) sin . The time when particle at x = 4 m first passes through mean position, will be
A sinusoidal progressive wave is generated in a string. It’s equation is given by y = (2 mm) sin . The time when particle at x = 4 m first passes through mean position, will be
physics-General
physics-
An observer starts moving with uniform acceleration 'a' towards a stationary sound source of frequency f. As the observer approaches the source, the apparent frequency f' heard by the observer varies with time t as:
An observer starts moving with uniform acceleration 'a' towards a stationary sound source of frequency f. As the observer approaches the source, the apparent frequency f' heard by the observer varies with time t as:
physics-General
physics-
A detector is released from rest over a source of sound of frequency . The frequency observed by the detector at time t is plotted in the graph. The speed of sound in air is (g = 10 m/s2)
A detector is released from rest over a source of sound of frequency . The frequency observed by the detector at time t is plotted in the graph. The speed of sound in air is (g = 10 m/s2)
physics-General
physics-
A stationary sound source 's' of frequency 334 Hz and a stationary observer 'O' are placed near a reflecting surface moving away from the source with velocity 2 m/sec as shown in the figure. If the velocity of the sound waves is air is V = 330 m/sec, the apparent frequency of the echo is
A stationary sound source 's' of frequency 334 Hz and a stationary observer 'O' are placed near a reflecting surface moving away from the source with velocity 2 m/sec as shown in the figure. If the velocity of the sound waves is air is V = 330 m/sec, the apparent frequency of the echo is
physics-General