Question
The constant term in the product (𝑥 + 3) (𝑥 + 4) is
- 7
- 12
- 1
- -12
Hint:
- Multiplication polynomials
- Multiply each term with each other.
- Distributive identity:
- a × (b + c) = ab + ac
The correct answer is: 12
Answer:
- Step by step explanation:
- Given:
(x + 3) (x + 4)
- Step 1:
Product
(x + 3) (x + 4)
x (x + 4) + 3 (x + 4)
[ a ( b + c) = ab + ac ]
x2 + 4x + 3x + 12
x2 + 7x + 12
Hence, constant term is 12
- Final Answer:
Correct option B. 12.
- Given:
[ a ( b + c) = ab + ac ]
Hence, constant term is 12
Related Questions to study
Write the product in standard form. (3𝑦 − 5)(3𝑦 + 5)
This question can be easily solved by using the formula
(a + b)(a - b) = a2 - b2
Write the product in standard form. (3𝑦 − 5)(3𝑦 + 5)
This question can be easily solved by using the formula
(a + b)(a - b) = a2 - b2
Write the product in standard form. (𝑥 − 4)(𝑥 + 4)
This question can be easily solved by using the formula
(a + b)(a - b) = a2 - b2
Write the product in standard form. (𝑥 − 4)(𝑥 + 4)
This question can be easily solved by using the formula
(a + b)(a - b) = a2 - b2
The area of the rectangle is 𝑥2 + 11𝑥 + 28. Its length is x + __ and its width is __+ 4. Find the missing terms in the length and the width.
The area of the rectangle is 𝑥2 + 11𝑥 + 28. Its length is x + __ and its width is __+ 4. Find the missing terms in the length and the width.
Simplify: 12 - [13a - 4(5a -7) - 8 {2a -(20a - 3a)}]
Simplify: 12 - [13a - 4(5a -7) - 8 {2a -(20a - 3a)}]
Write the product in standard form. (2𝑥 + 5)2
This question can be easily solved by using the formula
(a + b)2 = a2 + 2ab + b2
Write the product in standard form. (2𝑥 + 5)2
This question can be easily solved by using the formula
(a + b)2 = a2 + 2ab + b2
Write the product in standard form. (𝑥 − 7)2
This question can be easily solved by using the formula
(a - b)2 = a2 - 2ab + b2
Write the product in standard form. (𝑥 − 7)2
This question can be easily solved by using the formula
(a - b)2 = a2 - 2ab + b2
(𝑥 + 9)(𝑥 + 9) =
This question can be easily solved by using the formula
(a + b)2 = a2 + 2ab + b2
(𝑥 + 9)(𝑥 + 9) =
This question can be easily solved by using the formula
(a + b)2 = a2 + 2ab + b2
Find the area of the rectangle.
Find the area of the rectangle.
The table below shows the distance a train traveled over time. How can you determine the equation that represents this relationships.
The table below shows the distance a train traveled over time. How can you determine the equation that represents this relationships.
Simplify: 4x2(7x -5) -6x2(2 -4x)+ 18x3
Simplify: 4x2(7x -5) -6x2(2 -4x)+ 18x3
(𝑎 + (−3))2 =
This question can be easily solved by using the formula
(a - b)2 = a2 - 2ab + b2
(𝑎 + (−3))2 =
This question can be easily solved by using the formula
(a - b)2 = a2 - 2ab + b2
Use the table method to multiply a binomial with a trinomial.
(−3𝑥2 + 1) (2𝑥2 + 3𝑥 − 4)
Use the table method to multiply a binomial with a trinomial.
(−3𝑥2 + 1) (2𝑥2 + 3𝑥 − 4)
(𝑥 − 2)2 =
This question can be easily solved by using the formula
(a - b)2 = a2 - 2ab + b2
(𝑥 − 2)2 =
This question can be easily solved by using the formula
(a - b)2 = a2 - 2ab + b2