Maths-
General
Easy

Question

Use binomial theorem to expand .left parenthesis x minus 1 right parenthesis to the power of 7

The correct answer is: For the expansion of an expression , we would have n+1 terms. This is something you need to keep in mind.


    ANSWER:
    Hint:
    The binomial expansion is left parenthesis x plus y right parenthesis to the power of n equals sum from k equals 0 to n of   n C subscript k x to the power of n minus k end exponent y to the power of k , here n greater or equal than 0.
    We are asked to use binomial theorem to expand left parenthesis x minus 1 right parenthesis to the power of 7 .
    Step 1 of 2:
    The given expression is left parenthesis x minus 1 right parenthesis to the power of 7where x = xstraight & y equals negative 1 . The value of n=7, hence we would have 7+1=8 terms in the expansion.
    Step 2 of 2:
    Substitute the values of in the binomial expression to get the expansion:
    left parenthesis x minus 1 right parenthesis to the power of 7 equals 7 C subscript 0 left parenthesis x right parenthesis to the power of 7 plus 7 C subscript 1 left parenthesis x right parenthesis to the power of 6 left parenthesis negative 1 right parenthesis plus 7 C subscript 2 left parenthesis x right parenthesis to the power of 5 left parenthesis negative 1 right parenthesis squared plus 7 C subscript 3 left parenthesis x right parenthesis to the power of 4 left parenthesis negative 1 right parenthesis cubed plus 7 C subscript 4 left parenthesis x right parenthesis cubed left parenthesis negative 1 right parenthesis to the power of 4 plus 7 C subscript 5 left parenthesis x right parenthesis squared left parenthesis negative 1 right parenthesis to the power of 5 plus 7 C subscript 6 left parenthesis x right parenthesis left parenthesis negative 1 right parenthesis to the power of 6 plus 7 C subscript 7 left parenthesis negative 1 right parenthesis to the power of 7
    equals x to the power of 7 plus 7 x to the power of 6 left parenthesis negative 1 right parenthesis plus 21 x to the power of 5 left parenthesis 1 right parenthesis plus 35 x to the power of 4 left parenthesis negative 1 right parenthesis plus 35 x cubed left parenthesis 1 right parenthesis plus 21 x squared left parenthesis negative 1 right parenthesis plus 7 x left parenthesis 1 right parenthesis plus left parenthesis negative 1 right parenthesis
    equals x to the power of 7 minus 7 x to the power of 6 plus 21 x to the power of 5 minus 35 x to the power of 4 plus 35 x cubed minus 21 x squared plus 7 x minus 1
    Thus, the expansion is: left parenthesis x minus 1 right parenthesis to the power of 7 equals x to the power of 7 minus 7 x to the power of 6 plus 21 x to the power of 5 minus 35 x to the power of 4 plus 35 x cubed minus 21 x squared plus 7 x minus 1
    Note:
    For the expansion of an expression , we would have n+1 terms. This is something you need to keep in mind.

    Related Questions to study

    General
    Maths-

    Use polynomial identities to factor the polynomials or simplify the expressions :
    64 x cubed minus 125 y to the power of 6

    Use polynomial identities to factor the polynomials or simplify the expressions :
    64 x cubed minus 125 y to the power of 6

    Maths-General
    General
    Maths-

    How are Pascal’s triangle and binomial expansion such as (a + b)5 related?

    You can find the expansion of (x + y)n  using both Pascal’s triangle and binomial expansion.

    How are Pascal’s triangle and binomial expansion such as (a + b)5 related?

    Maths-General

    You can find the expansion of (x + y)n  using both Pascal’s triangle and binomial expansion.

    General
    Maths-

    Use binomial theorem to expand .open parentheses s squared plus 3 close parentheses to the power of 5

    Use binomial theorem to expand .open parentheses s squared plus 3 close parentheses to the power of 5

    Maths-General
    parallel
    General
    Maths-

    Use polynomial identities to factor the polynomials or simplify the expressions :
    216 plus 27 y to the power of 12

    Use polynomial identities to factor the polynomials or simplify the expressions :
    216 plus 27 y to the power of 12

    Maths-General
    General
    Maths-

    Explain why the middle term left parenthesis x plus 5 right parenthesis squared is 10x.

    In the Binomial Expansion's middle term, in the expansion of (a + b)n, there are (n + 1) terms. Therefore, we can write the middle term or terms of (a + b)n based on the value of n. It follows that there will only be one middle term if n is even and two middle terms if n is odd.
    The binomial expansions of (x + y)n are used to find specific terms, such as the term independent of x or y.
    Practice Questions
    1. Find the expansion of (9x - 2y)12's coefficient of x5y7.
    2. In the expansion of (2x - y)11, locate the 8th term.

    Explain why the middle term left parenthesis x plus 5 right parenthesis squared is 10x.

    Maths-General

    In the Binomial Expansion's middle term, in the expansion of (a + b)n, there are (n + 1) terms. Therefore, we can write the middle term or terms of (a + b)n based on the value of n. It follows that there will only be one middle term if n is even and two middle terms if n is odd.
    The binomial expansions of (x + y)n are used to find specific terms, such as the term independent of x or y.
    Practice Questions
    1. Find the expansion of (9x - 2y)12's coefficient of x5y7.
    2. In the expansion of (2x - y)11, locate the 8th term.

    General
    Maths-

    Use binomial theorem to expand open parentheses s squared plus 3 close parentheses squared .

    Use binomial theorem to expand open parentheses s squared plus 3 close parentheses squared .

    Maths-General
    parallel
    General
    Maths-

    Use polynomial identities to factor the polynomials or simplify the expressions :
    4 x squared minus y to the power of 6

    Use polynomial identities to factor the polynomials or simplify the expressions :
    4 x squared minus y to the power of 6

    Maths-General
    General
    Maths-

    How can you use polynomial identities to rewrite expressions efficiently ?

    Polynomial identities are equations that are true for all possible values of the variable and numbers.

    How can you use polynomial identities to rewrite expressions efficiently ?

    Maths-General

    Polynomial identities are equations that are true for all possible values of the variable and numbers.

    General
    Maths-

    Use binomial theorem to expand (2c + d)6

    The expansion of the expression can also be found using the Pascal’s triangle. But, it is necessary to remember the values of the triangle to write down the expansion.

    Use binomial theorem to expand (2c + d)6

    Maths-General

    The expansion of the expression can also be found using the Pascal’s triangle. But, it is necessary to remember the values of the triangle to write down the expansion.

    parallel
    General
    Maths-

    Use binomial theorem to expand left parenthesis x minus 3 right parenthesis to the power of 4 .

    Use binomial theorem to expand left parenthesis x minus 3 right parenthesis to the power of 4 .

    Maths-General
    General
    Maths-

    Use binomial theorem to expand (x - 1)7

    For the expansion of an expression (x + y)n , we would have n+1 terms. This is something you need to keep in mind.

    Use binomial theorem to expand (x - 1)7

    Maths-General

    For the expansion of an expression (x + y)n , we would have n+1 terms. This is something you need to keep in mind.

    General
    Maths-

    Use polynomial identities to factor the polynomials or simplify the expressions :
    x cubed minus 27 y cubed

    Use polynomial identities to factor the polynomials or simplify the expressions :
    x cubed minus 27 y cubed

    Maths-General
    parallel
    General
    Maths-

    Use Pascal triangle to expandleft parenthesis x plus y right parenthesis to the power of 6

    Use Pascal triangle to expandleft parenthesis x plus y right parenthesis to the power of 6

    Maths-General
    General
    Maths-

    Use binomial theorem to expand (s2 + 3)5

    For the expansion of an expression (x + y)n , we would have n+1 terms. This is something you need to keep in mind.

    Use binomial theorem to expand (s2 + 3)5

    Maths-General

    For the expansion of an expression (x + y)n , we would have n+1 terms. This is something you need to keep in mind.

    General
    Maths-

    Use polynomial identities to factor the polynomials or simplify the expressions :
    8 x cubed plus y to the power of 9

    Use polynomial identities to factor the polynomials or simplify the expressions :
    8 x cubed plus y to the power of 9

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.