Question
Write an equivalent expression , state the domain:
Hint:
The expansion of is. We have to state the domain of a rational expression while simplifying them because we must exclude zeros of a denominator as dividing with zero is not defined.
We are asked to find an equivalent expression and domain for the given expression.
The correct answer is: Hence, the domain is, (-∞,2)∪(2,∞).
Step 1 of 2:
Simplify the expression and cancel out the common factors.
Hence, the equivalent expression of .
Step 2 of 2:
When we find the domain, we have to exclude the values for which the denominator attains a zero value. So, we have:
That is, x = 2 must be excluded.
Hence, the domain is, .
We have to state the domain of a rational expression while simplifying them because we must exclude zeros of a denominator as dividing with zero is not defined.
Related Questions to study
Sketch the graph of, .
Sketch the graph of, .
Sketch the graph of, .
Sketch the graph of, .
Find the simplified form of each product , and give the domain.
Find the simplified form of each product , and give the domain.
Write an equivalent expression , state the domain .
Write an equivalent expression , state the domain .
Write the equation in slope-intercept form of the line that passes through the points (-1, -5) and (4, -2).
Let us assume the slope of the line to determine at a given point is also the y-intercept. You can utilize the slope-intercept formula, y = mx + b. (0, b). The y value of the y-intercept point is represented by the symbol 'b' in the formula. The slope of the line results when any two points on a line are entered into the slope formula. In this instance, 1/3 should be the response when 'P1' and 'P2' are put into the slope calculation. You can use two different versions of a line's general form to find a line's equation.
¶The formula for equations of a line is:
1) The formula for Point-Slope is (y - y1) = m (x – x1)
2) The equation y = mx + b for the slope-intercept
Write the equation in slope-intercept form of the line that passes through the points (-1, -5) and (4, -2).
Let us assume the slope of the line to determine at a given point is also the y-intercept. You can utilize the slope-intercept formula, y = mx + b. (0, b). The y value of the y-intercept point is represented by the symbol 'b' in the formula. The slope of the line results when any two points on a line are entered into the slope formula. In this instance, 1/3 should be the response when 'P1' and 'P2' are put into the slope calculation. You can use two different versions of a line's general form to find a line's equation.
¶The formula for equations of a line is:
1) The formula for Point-Slope is (y - y1) = m (x – x1)
2) The equation y = mx + b for the slope-intercept
Express the following as a rational expression in its lowest terms .
Express the following as a rational expression in its lowest terms .
What is the simplified form of
What is the simplified form of
Write the equation in slope-intercept form of the line that passes through the points (3, 1) and (0, -3).
The slope-intercept form of a line is the most common way to express a line's equation. For example, the slope-intercept form, y = mx + c, is the equation of a straight line with slope m and intercept c on the y-axis. In this case, m and c can be any two real numbers.
The value of m in the equation defines the line's slope (or gradient). It can have a positive, negative, or 0 value.
• Positive gradient lines rise from left to right.
• Negative gradient lines slant in reverse order From left to right.
• The gradient of horizontal lines is zero.
The value of c is known as the line's vertical intercept. When x = 0, this is the value of y. When drawing a line, c indicates where the line intersects the vertical axis.
For example, y = 3x + 2 has a slope of 3 (i.e., m = 3) and an intercept of 2 on the y-axis (i.e., c = 2).
To determine the slope-intercept equation. First, find the slope of a line and then the y-intercept of a line.
Write the equation in slope-intercept form of the line that passes through the points (3, 1) and (0, -3).
The slope-intercept form of a line is the most common way to express a line's equation. For example, the slope-intercept form, y = mx + c, is the equation of a straight line with slope m and intercept c on the y-axis. In this case, m and c can be any two real numbers.
The value of m in the equation defines the line's slope (or gradient). It can have a positive, negative, or 0 value.
• Positive gradient lines rise from left to right.
• Negative gradient lines slant in reverse order From left to right.
• The gradient of horizontal lines is zero.
The value of c is known as the line's vertical intercept. When x = 0, this is the value of y. When drawing a line, c indicates where the line intersects the vertical axis.
For example, y = 3x + 2 has a slope of 3 (i.e., m = 3) and an intercept of 2 on the y-axis (i.e., c = 2).
To determine the slope-intercept equation. First, find the slope of a line and then the y-intercept of a line.