Need Help?

Get in touch with us

searchclose
bannerAd

Congruence Transformations

Grade 9
Sep 10, 2022
link

Key Concepts

  • Perform Congruence Transformations
  • Identify transformations

Perform Congruence Transformations 

What is a transformation? 

A transformation is an operation that changes a geometric figure to produce a new figure. 

What is a transformation? 

Types of transformations: 

Transformations can be divided into 4 types based on the image. 

  • Translation 
  • Rotation 
  • Reflection 
  • Dilation 

1. Translation: 

A translation moves every point of a figure in the same direction and for the same distance. 

Translation

2. Rotation: 

A rotation turns the figure to its fixed point called as the center of rotation. 

Rotation: 

3. Reflection: 

A reflection uses a line of reflection to create a mirror image of the original figure. 

parallel
Reflection

4. Dilation: 

Dilation is the process of increasing or decreasing the size of the image without changing its shape. 

Dilation:

What is a congruence transformation? 

A transformation that changes the position of the figure without changing its size or shape is called a congruence transformation. 

Translations, reflections, and rotations are the three types of congruence transformations. 

What is a congruence transformation? 

Identify transformations 

Example 1: 

Identify the type of transformation in the following images. 

parallel
Example 1

Solution: 

a. Reflection in a horizontal line. 

b.Rotation about a point. 

c.Translation in a straight path. 

Example 2: 

The vertices of a quadrilateral ABCD are A (– 4, 3), B (– 2, 4), C (– 1, 1), and D (– 3, 1). Draw a figure and its image after the translation (x,y)→(x+5,y−2).x,y→x+5,y−2.

Solution: 

Draw a quadrilateral ABCD. Find the translation of each vertex by adding 5 to its x – coordinate and subtract 2 from its y – coordinate.  

Solution
Solution table

Example 3: 

In the given figure, use a reflection in X–axis to draw the other half of the pattern. 

Example 3

Solution: 

To find the corresponding vertex in the image, multiply the Y–coordinate of the vertex by – 1.  

Solution table
Solution

Example 4: 

Graph AB and CD with the given vertices, A (– 3, 1), B (– 1, 3), C (1, 3), D (3, 1). Give the angle and direction of rotation. 

Solution:  

We first draw AB and CD with the given vertices. 

Example 4: 

From the above figure,  

mAOC=mBOD=90°

∴The given vertices form an angle of 90°clockwise rotation. 

Example 5: 

The vertices of a triangle ABC are A (4, 4), B (6, 6), C (7, 4), and the notation (x,y)→(x+1, y−3)(x,y)→(x+1, y−3) indicates the translation of ∆ABC to ∆DEF. Prove that ∆ABC≅∆DEF to verify the translation, a congruence transformation. 

Solution: 

Solution

From the above figure and the given vertices, 

From the above figure and the given vertices

Exercise

  1. Identify the transformation in the given figure.
Identify the transformation in the given figure.
  1. In the given image ABCD with the coordinates  Draw its image after the translation.
In the given image ABCD with the coordinates  Draw its image after the translation.
  1. Describe the translation with the given coordinates: 2 units to the right, 1 unit down.
  2. Draw the other half of the given figure using –axis reflection.
other half of the given figure
  1. Graph AB and CD using the coordinates A (1, 2), B (3, 0), C (2, –1), D (2, 3) and give the angle of rotation.
  2. Find the corresponding point in the figure with the given point and translation of an image.
    Point on image: (4, 0); translation:
  3. Describe the translation with the given coordinates: 6 units to the right, 3 units down.
  4. Identify the transformation in the given figure
  1. Draw the other half of the given figure using –axis reflection.
Draw the other half of the given figure using –axis reflection.
  1. Identify the type of transformation in the given image.

Concept Map

Concept Map
Congruence Transformations

Comments:

Related topics

Addition and Multiplication Using Counters and Bar-Diagrams

Addition and Multiplication Using Counters & Bar-Diagrams

Introduction: We can find the solution to the word problem by solving it. Here, in this topic, we can use 3 methods to find the solution. 1. Add using counters 2. Use factors to get the product 3. Write equations to find the unknown. Addition Equation: 8+8+8 =? Multiplication equation: 3×8=? Example 1: Andrew has […]

Read More >>
DILATION

Dilation: Definitions, Characteristics, and Similarities

Understanding Dilation A dilation is a transformation that produces an image that is of the same shape and different sizes. Dilation that creates a larger image is called enlargement. Describing Dilation Dilation of Scale Factor 2 The following figure undergoes a dilation with a scale factor of 2 giving an image A’ (2, 4), B’ […]

Read More >>
Numerical Expressions

How to Write and Interpret Numerical Expressions?

Write numerical expressions What is the Meaning of Numerical Expression? A numerical expression is a combination of numbers and integers using basic operations such as addition, subtraction, multiplication, or division. The word PEMDAS stands for: P → Parentheses E → Exponents M → Multiplication D → Division  A → Addition S → Subtraction         Some examples […]

Read More >>
System of linear inequalities

System of Linear Inequalities and Equations

Introduction: Systems of Linear Inequalities: A system of linear inequalities is a set of two or more linear inequalities in the same variables. The following example illustrates this, y < x + 2…………..Inequality 1 y ≥ 2x − 1…………Inequality 2 Solution of a System of Linear Inequalities: A solution of a system of linear inequalities […]

Read More >>

Other topics