Need Help?

Get in touch with us

searchclose
bannerAd

Geometric Sequences

Grade 10
Sep 14, 2022
link

Key Concepts

  • Identify and describe an arithmetic sequence.
  • Identify and describe a geometric sequence.
  • Write the recursive formula for a sequence.
  • Use the explicit formula.
  • Connect geometric sequences and exponential functions.
  • Apply the recursive and explicit formulas.
  • Explain the formula for the sum of a finite geometric series.
  • Use a finite geometric series.

Geometric Sequences

1. Arithmetic sequence 

A man is going upstairs. Height of each step is increasing constantly than the previous step. 

Arithmetic sequence Geometric Sequences

There can be gradual change in numbers also. 

  • A number sequence in which the common difference between two consecutive terms is constant is called an arithmetic sequence
  • Example: The common difference of the given sequence is +5. 
The common difference of the given sequence is +5

2. Geometric sequence 

  • A sequence in which the constant ratio between two consecutive terms is constant is called a geometric sequence
  • The common difference between the consecutive terms of the geometric sequence is not constant. 
  • Example: The common ratio of terms of the sequence is 2 
The common ratio of terms of the sequence is 2

3. Recursive formula for a sequence 

  • We can use the recursive formula to find the next term of a geometric sequence. 
Recursive formula for a sequence 

Example: Write the recursive formula for a geometric sequence 2, 10, 50, 250, … 

The constant ratio of the given sequence is 5. 

The recursive formula for a geometric sequence is an = r(an−1)

parallel

So, the recursive formula for the sequence 2, 10, 50, 250, … is an = 5(an−1)

4. Explicit formula for a sequence 

  • We can use the explicit formula to find the 8th term of a geometric sequence. 
Explicit formula for a sequence 

Example: What is the 10th term of the geometric sequence 10.5, 21, 42, 84…?  

Sol: Using the explicit formula, an = a1 × (r)n−1

For the given sequence, the constant ratio is 21/10.5=2=

So, a10 = 10.5 × (2)9

parallel

=10.5 × 512

= 5376 

5. Connect Geometric sequences and Exponential functions 

The exponential function can be written as a geometric sequence with the first term and constant ratio using the explicit formula. 

Connect Geometric sequences and Exponential functions 

6. Connect Geometric sequences and Exponential functions 

The sum of the terms of a geometric sequence is a Geometric series. 

Let Sn be the sum of a geometric sequence with n terms. 

Connect Geometric sequences and Exponential functions 
example

Exercise

  • The constant ratio of the geometric sequence 3/5,3/2,15/4,75/8,… is .
  • Write the recursive formula for a geometric sequence 2, 16, 128, 1024, …
  • What is the 10th term of the geometric sequence 10.5, 21, 42, 84…?
  • The first term of the sequence a_3=8(1/2)^7 is _.
    The constant ratio of the geometric sequence 10.5, 21, 42, 84… is __.

What we have learned

  • A sequence in which the common difference between two consecutive terms is constant is called an arithmetic sequence.
  • A sequence in which the constant ratio between two consecutive terms is constant is called a geometric sequence.

Concept Map

Concept Map: 
Concept Map: 

Comments:

Related topics

Addition and Multiplication Using Counters and Bar-Diagrams

Addition and Multiplication Using Counters & Bar-Diagrams

Introduction: We can find the solution to the word problem by solving it. Here, in this topic, we can use 3 methods to find the solution. 1. Add using counters 2. Use factors to get the product 3. Write equations to find the unknown. Addition Equation: 8+8+8 =? Multiplication equation: 3×8=? Example 1: Andrew has […]

Read More >>
DILATION

Dilation: Definitions, Characteristics, and Similarities

Understanding Dilation A dilation is a transformation that produces an image that is of the same shape and different sizes. Dilation that creates a larger image is called enlargement. Describing Dilation Dilation of Scale Factor 2 The following figure undergoes a dilation with a scale factor of 2 giving an image A’ (2, 4), B’ […]

Read More >>
Numerical Expressions

How to Write and Interpret Numerical Expressions?

Write numerical expressions What is the Meaning of Numerical Expression? A numerical expression is a combination of numbers and integers using basic operations such as addition, subtraction, multiplication, or division. The word PEMDAS stands for: P → Parentheses E → Exponents M → Multiplication D → Division  A → Addition S → Subtraction         Some examples […]

Read More >>
System of linear inequalities

System of Linear Inequalities and Equations

Introduction: Systems of Linear Inequalities: A system of linear inequalities is a set of two or more linear inequalities in the same variables. The following example illustrates this, y < x + 2…………..Inequality 1 y ≥ 2x − 1…………Inequality 2 Solution of a System of Linear Inequalities: A solution of a system of linear inequalities […]

Read More >>

Other topics