Key Concepts
- Name angles
- Measure and classify angles
- Find angle measures
- Identify congruent angles
- Double an angle measure
Introduction
In this chapter, we will learn to define, classify, draw, name, and measure angles, use the protractor and angle addition postulates and double an angle measure.
Angle
An angle consists of two different rays (sides) that share the same endpoint (vertex).
Angle ABC, ∠ABC, or ∠B
Sides:
Sides are the rays.
Vertex:
It is the point where the two rays meet.
Example:
In the above example, the angle with sides AB and AC- can be named or . Point A is the vertex of the angle.
Name angles
We can follow the rules below while naming angles:
- Use three capital letters – Vertex in the middle
- Can use one capital letter if it is the vertex and it is obvious which angle you are referring to
- Can use the number located inside the angle
Example 1:
Name this angle in three different ways:
The above angle can be named as,
- ∠DRY
- ∠YRD
- ∠R
Example 2:
Name this angle in four different ways:
The above angle can be named as,
- ∠WET
- ∠TEW
- ∠E
- ∠1
Example 3:
Name the three angles in the diagram.
The three angles are,
∠WXY, or ∠YXW
∠YXZ, or ∠ZXY
∠WXZ, or ∠ZXW
Why should you NOT label any of these angles “Angle X“?
You should not name any of these angles ∠X because all three angles have X as their vertex.
POSTULATE 3 Protractor Postulate
The m∠AOB is equal to the absolute value of the difference between the real numbers for OA and OB m∠AOB = |55° – 180°|
m∠AOB = |–125°|
m∠AOB = 125°
Measure and classify angles
The angle is measured using a protractor in degrees. It is the smallest amount of rotation about the vertex from one side to the other.
Example:
- m∠APB = 60°
- m∠APC = 100°
- m∠BPC = 40°
Types of angles
- Acute angle: between 0° and 90°
- Right angle: exactly 90°°
- Obtuse Angle: between 90° ° and 180°°
- Straight angle: exactly 180°°
Angle Addition Postulate
Smaller angles can be added together to form larger angles if they share a common vertex.
If B is in the interior of ∠AOC, then the m∠AOC is equal to the sum of m∠AOB and m∠BOC.
m∠AOC = m∠AOB + m∠BOC
Find angle measures
Example:
Given that m∠LKN = 145° find m∠LKM and m∠MKN.
STEP 1: Write and solve an equation to find the value of x.
STEP 2: Evaluate the given expressions when x = 23.
m∠LKM = (2x + 10)°= (2.23 + 10)° = 56°
m∠MKN = (4x – 3)°= (4.23 – 3)° = 89°
So, m∠LKM = 56°
and m∠MKN = 89°.
Congruent Angles
Congruent angles have the same angle measure.
Example:
Can be marked using the same number of hash marks:
Identify congruent angles
In the given picture, identify the angles that are congruent. If m∠DEG = 157° then find m∠GKL?
Solution:
There are two pairs of congruent angles:
∠DEF ≅ ∠JKL and ∠DEG ≅ ∠GKL.
Because ∠DEG ≅ ∠GKL, m∠DEG = m∠GKL. So, m∠GKL = 157°.
Double an angle measure
In the below diagram, YW bisects ∠XYZ, and m∠XYW = 18°. Find m∠XYZ.
Solution:
By the Angle Addition Postulate, m∠XYZ = m∠XYW + m∠WYZ. Because YW bisects ∠XYZ, you know that ∠XYW ≅ ∠WYZ.
So, m∠XYW = m∠WYZ, and you can write
m∠XYZ = m∠ XYW + m∠WYZ = 18° + 18° = 36°.
Exercise
- Write three names for the angle shown. Then name the vertex and sides of the angle.
- Name three different angles in the diagram given below.
- Classify the angle with the given measure as acute, obtuse, right, or straight.
a) m∠W = 180 b) m∠X = 30
- Classify the angle with the given measure as acute, obtuse, right, or straight.
a) m∠Y = 90 b) m∠Z = 95
- Use the diagram to find the angle measure. Then classify the angle.
- ∠BOC =
- ∠AOB =
- ∠DOB =
- ∠DOE =
- Use the diagram to find the angle measure. Then classify the angle.
- ∠AOC =
- ∠BOE =
- ∠EOC =
- ∠COD =
- Fill in the blanks with the help of the below given picture.
- Angles with the same measure are congruent angles. This means that if _____________________, then __________________. You can also say that if _______________________, then ______________________.
- Find the indicated angle measure
- Given m∠WXZ = 80 , find m∠YXZ,
- In the below diagram, bisects ∠XWY, and m∠XWZ = 52 . Find m∠YWZ.
What have we learned
- To define, classify, draw, name, and measure angles.
- To use the protractor and angle addition postulates.
- To double an angle measure
Concept Map
Related topics
Addition and Multiplication Using Counters & Bar-Diagrams
Introduction: We can find the solution to the word problem by solving it. Here, in this topic, we can use 3 methods to find the solution. 1. Add using counters 2. Use factors to get the product 3. Write equations to find the unknown. Addition Equation: 8+8+8 =? Multiplication equation: 3×8=? Example 1: Andrew has […]
Read More >>Dilation: Definitions, Characteristics, and Similarities
Understanding Dilation A dilation is a transformation that produces an image that is of the same shape and different sizes. Dilation that creates a larger image is called enlargement. Describing Dilation Dilation of Scale Factor 2 The following figure undergoes a dilation with a scale factor of 2 giving an image A’ (2, 4), B’ […]
Read More >>How to Write and Interpret Numerical Expressions?
Write numerical expressions What is the Meaning of Numerical Expression? A numerical expression is a combination of numbers and integers using basic operations such as addition, subtraction, multiplication, or division. The word PEMDAS stands for: P → Parentheses E → Exponents M → Multiplication D → Division A → Addition S → Subtraction Some examples […]
Read More >>System of Linear Inequalities and Equations
Introduction: Systems of Linear Inequalities: A system of linear inequalities is a set of two or more linear inequalities in the same variables. The following example illustrates this, y < x + 2…………..Inequality 1 y ≥ 2x − 1…………Inequality 2 Solution of a System of Linear Inequalities: A solution of a system of linear inequalities […]
Read More >>
Comments: