Need Help?

Get in touch with us

searchclose
bannerAd

Multiplying Special Cases

Grade 10
Sep 15, 2022
link

Key Concepts

  • Determine the square of a binomial
  • Find the product of a sum and a difference
  • Apply the square of a binomial

Determine the Square of a Binomial 

Concept 

Why is (a + b)2 considered a special case when multiplying polynomials?  

Use the distributive property.  

Use the distributive property.

Use a visual model.   

visual model

The square of a binomial follows the pattern: (a + b)2 = a2 + 2ab + b2 

Example 1  

parallel

What is the product (5x – 3)2 

Use the pattern learned in the previous slide to find the square of a difference.    

(5x – 3)2 = (5x + (-3))2 ——————————Rewrite the difference as sum.  

= (5x)2+ 2(5x)(-3) + (-3)2————Substitute 5x and -3 into a2+ 2ab + b2 

= 25x2– 30x + 9 ————————-Simplify  

parallel

You can write the product (5x – 3) 2as 25x2– 30x + 9.  

Example 2 

How can you use the square of a binomial to find the product 292 

Rewrite the product as a difference of two values whose squares you know, such as (30 – 1) 2. Then use the pattern for the square of a binomial to find its square. 

Example 2 

So, 292 = 841. In general, you can use the square of a binomial to find the square of a large number by rewriting the number as the sum or difference of two numbers with known squares.  

Find the Product of a Sum and a Difference 

Concept  

What is the product (a + b)(a – b)? 

Use the distributive property to find the product.  

Use the distributive property to find the product.  

The product of two binomials in the form: (a + b)(a – b) is a2 – b2

The product of the sum and the difference of the same two values results in the difference of two squares. 

Example 3 

What is the product (5x + 7) (5x – 7)? 

Use the pattern learned in the previous slide.  

(5x + 7) (5x – 7) = (5x)2 – (7)2——— Substitute 5x and 7 into a2– b2.  

= 25x2– 49 ———— Simplify. 

The product of (5x + 7) (5x – 7) is 25x2– 49. It is the difference of two squares, (5x)2 – (7)2.  

Example 4 

How can you use the difference of two squares to find the product of 43 and 37? 

Rewrite the product as the sum and the difference of the same two numbers, a and b.  

Example 4 

You can use the difference of two squares to mentally find the product of large numbers when the numbers are the same distance from a known square.  

Apply the Square of a Binomial 

Example 5 

A graphic designer is developing images for icons. The square pixelated image is placed inside a border that is 2 pixels wide on all sides. If the area of the border of the image is 176 square pixels, what is the area of the image? 

Example 5 

Solution: 

Let x represent the length and the width of the image. 

Formulate:  

The area of the image and the border is represented by the expression (x + 4)2.   

Formulate:  

Compute: 

Compute: 

The image will be 20 pixels by 20 pixels. The area of the image is 20*20, or 400 square pixels.  

Questions  

Question 1 

Find each product.  

1. (3x – 4)2   

Solution: 

Using the pattern (a + b) 2 = a2 + 2ab + b2 

(3x + (-4)) 2 = (3x) 2 + 2 × 3x × (-4) + (-4) 2 = 9x2 – 24x + 16 

2. 712  

Solution: 

(70 + 1) 2 = (70) 2 + 2 × 70 ×1 + (1) 2 = 4900 + 140 + 1 = 5041  

Question 2 

Find each product. 

1. (2x – 4)(2x + 4)     

Solution: 

Using the pattern (a + b)(a – b) = a2 – b2  

(2x – 4)(2x + 4) = (2x) 2 – 42 = 4x2 – 16  

2. 56*44  

Solution: 

(50 + 6)(50 – 6) = (50) 2 – 62 = 2500 – 36 = 2464 

Question 3 

In example 5, what is the area of the square image if the area of the border is 704 square pixels and the border is 4 pixels wide? 

Solution: 

Let x represent the length and the width of the image. 

Since the border is 4 pixels wide,  

The area of the image and the border is represented by the expression (x + 8)2.  

Area of border = total area – area of image  

                             = (x + 8) 2 – x2  

                             = x2 + 2 × 8 × x + 82 – x2

        = 16x + 64  

Since the area of border is 704 square pixels,  

16x + 64 = 704  

16x = 640  

x = 40 pixels  

Area of the image = x2 = 402 = 1600 square pixels  

Key Concepts Covered  

Key Concepts Covered  

Exercise

  1. Find the product of the following equations:
    • (x+9) (x-9)
    • (x-7) (x-7)
    • (2x – 1) 2
    • (x – 7) 2
    • (2x + 5) 2
  2. Kennedy multiplies (x – 3) (x + 3) and gets an answer of x2 – 6x – 9. Describe and correct the Kennedy’s error.
  3. Use the square of a binomial to find the product. 542
  4. Explain why the product of two binomials in the form (a + b) (a – b) is a binomial instead of a trinomial.
  5. Find the product. (3a – 4b) (3a + 4b)
  6. Find the product. (x2 – 2y) (x2 + 2y)

Comments:

Related topics

Addition and Multiplication Using Counters and Bar-Diagrams

Addition and Multiplication Using Counters & Bar-Diagrams

Introduction: We can find the solution to the word problem by solving it. Here, in this topic, we can use 3 methods to find the solution. 1. Add using counters 2. Use factors to get the product 3. Write equations to find the unknown. Addition Equation: 8+8+8 =? Multiplication equation: 3×8=? Example 1: Andrew has […]

Read More >>
DILATION

Dilation: Definitions, Characteristics, and Similarities

Understanding Dilation A dilation is a transformation that produces an image that is of the same shape and different sizes. Dilation that creates a larger image is called enlargement. Describing Dilation Dilation of Scale Factor 2 The following figure undergoes a dilation with a scale factor of 2 giving an image A’ (2, 4), B’ […]

Read More >>
Numerical Expressions

How to Write and Interpret Numerical Expressions?

Write numerical expressions What is the Meaning of Numerical Expression? A numerical expression is a combination of numbers and integers using basic operations such as addition, subtraction, multiplication, or division. The word PEMDAS stands for: P → Parentheses E → Exponents M → Multiplication D → Division  A → Addition S → Subtraction         Some examples […]

Read More >>
System of linear inequalities

System of Linear Inequalities and Equations

Introduction: Systems of Linear Inequalities: A system of linear inequalities is a set of two or more linear inequalities in the same variables. The following example illustrates this, y < x + 2…………..Inequality 1 y ≥ 2x − 1…………Inequality 2 Solution of a System of Linear Inequalities: A solution of a system of linear inequalities […]

Read More >>

Other topics