Maths-
General
Easy

Question

L t subscript left parenthesis x rightwards arrow infinity right parenthesis invisible function application left parenthesis 2 plus c o s squared invisible function application x right parenthesis divided by left parenthesis x plus 2007 right parenthesis

  1. 1
  2. 0
  3. -1
  4. infinity

The correct answer is: 0

Related Questions to study

General
Maths-

The value of  if blank space presuperscript n C subscript 3 colon blank to the power of n minus 1 end exponent C subscript 4 equals 8 colon 5 is

The value of  if blank space presuperscript n C subscript 3 colon blank to the power of n minus 1 end exponent C subscript 4 equals 8 colon 5 is

Maths-General
General
Maths-

L t subscript left parenthesis x rightwards arrow infinity right parenthesis invisible function application left parenthesis √ left parenthesis x squared plus x right parenthesis minus x right parenthesis

For such questions, we have to remember the different formulas of limit.

L t subscript left parenthesis x rightwards arrow infinity right parenthesis invisible function application left parenthesis √ left parenthesis x squared plus x right parenthesis minus x right parenthesis

Maths-General

For such questions, we have to remember the different formulas of limit.

General
Maths-

L t subscript left parenthesis x rightwards arrow infinity right parenthesis left parenthesis √ left parenthesis x plus 1 right parenthesis minus √ x right parenthesis

For such questions, we should remember the formulae of limit.

L t subscript left parenthesis x rightwards arrow infinity right parenthesis left parenthesis √ left parenthesis x plus 1 right parenthesis minus √ x right parenthesis

Maths-General

For such questions, we should remember the formulae of limit.

parallel
General
Maths-

L t subscript left parenthesis x rightwards arrow infinity right parenthesis invisible function application left parenthesis a subscript 0 plus a subscript 1 x to the power of 1 plus a subscript 2 x squared plus midline horizontal ellipsis plus a subscript n x to the power of n right parenthesis divided by left parenthesis b subscript 0 plus b subscript 1 x to the power of 1 plus b subscript 2 x squared plus midline horizontal ellipsis. plus b subscript m x to the power of w right parenthesis where a subscript n greater than 0 comma b subscript m greater than 0 and n greater than m space right square bracket

L t subscript left parenthesis x rightwards arrow infinity right parenthesis invisible function application left parenthesis a subscript 0 plus a subscript 1 x to the power of 1 plus a subscript 2 x squared plus midline horizontal ellipsis plus a subscript n x to the power of n right parenthesis divided by left parenthesis b subscript 0 plus b subscript 1 x to the power of 1 plus b subscript 2 x squared plus midline horizontal ellipsis. plus b subscript m x to the power of w right parenthesis where a subscript n greater than 0 comma b subscript m greater than 0 and n greater than m space right square bracket

Maths-General
General
Maths-

4 L t subscript left parenthesis x rightwards arrow infinity right parenthesis invisible function application left square bracket √ left parenthesis x squared plus a x plus b right parenthesis minus x right square bracket

For such questions, we should know different formulas of limit.

4 L t subscript left parenthesis x rightwards arrow infinity right parenthesis invisible function application left square bracket √ left parenthesis x squared plus a x plus b right parenthesis minus x right square bracket

Maths-General

For such questions, we should know different formulas of limit.

General
Maths-

L t subscript left parenthesis n rightwards arrow infinity right parenthesis invisible function application sum subscript left parenthesis n equals 1 right parenthesis to the power of n   left square bracket 1 divided by left parenthesis left parenthesis 2 n plus 1 right parenthesis left parenthesis 2 n plus 3 right parenthesis right parenthesis right square bracket

L t subscript left parenthesis n rightwards arrow infinity right parenthesis invisible function application sum subscript left parenthesis n equals 1 right parenthesis to the power of n   left square bracket 1 divided by left parenthesis left parenthesis 2 n plus 1 right parenthesis left parenthesis 2 n plus 3 right parenthesis right parenthesis right square bracket

Maths-General
parallel
General
Maths-

L t subscript left parenthesis n rightwards arrow infinity right parenthesis invisible function application left parenthesis 1 cubed plus 2 cubed plus 3 cubed plus midline horizontal ellipsis. plus n cubed right parenthesis divided by left parenthesis n squared left parenthesis n squared plus 1 right parenthesis right parenthesis

L t subscript left parenthesis n rightwards arrow infinity right parenthesis invisible function application left parenthesis 1 cubed plus 2 cubed plus 3 cubed plus midline horizontal ellipsis. plus n cubed right parenthesis divided by left parenthesis n squared left parenthesis n squared plus 1 right parenthesis right parenthesis

Maths-General
General
Maths-

Let PQ and RS be tangents at the extremities of the diameter ‘PR’ of a circle of radius ‘r’. If PS and RQ intersect at a point ‘X’ on the circumference of the circle, then 2r equals :

Let PQ and RS be tangents at the extremities of the diameter ‘PR’ of a circle of radius ‘r’. If PS and RQ intersect at a point ‘X’ on the circumference of the circle, then 2r equals :

Maths-General
General
Maths-

L t subscript left parenthesis x rightwards arrow 0 right parenthesis invisible function application left parenthesis 6 to the power of x minus 3 to the power of x minus 2 to the power of x plus 1 right parenthesis divided by x squared

For such questions, we should be know different formulas of limit.

L t subscript left parenthesis x rightwards arrow 0 right parenthesis invisible function application left parenthesis 6 to the power of x minus 3 to the power of x minus 2 to the power of x plus 1 right parenthesis divided by x squared

Maths-General

For such questions, we should be know different formulas of limit.

parallel
General
Maths-

If 5 x minus 12 y plus 10 equals 0 blankand 12 y minus 5 x plus 16 equals 0 blankare two tangents to a circles then radius of the circle is

If 5 x minus 12 y plus 10 equals 0 blankand 12 y minus 5 x plus 16 equals 0 blankare two tangents to a circles then radius of the circle is

Maths-General
General
Maths-

The locus of center of a circle which passes through the origin and cuts off a length of 4 units from the lineblank x equals 3 blankis:

The locus of center of a circle which passes through the origin and cuts off a length of 4 units from the lineblank x equals 3 blankis:

Maths-General
General
Maths-

AB is a chord of the circle x to the power of 2 end exponent plus y to the power of 2 end exponent minus 7 x minus 4 equals 0. If (1, -1) is the mid point of the chord AB then the area of the triangle formed by AB and the coordinate axes is

AB is a chord of the circle x to the power of 2 end exponent plus y to the power of 2 end exponent minus 7 x minus 4 equals 0. If (1, -1) is the mid point of the chord AB then the area of the triangle formed by AB and the coordinate axes is

Maths-General
parallel
General
Maths-

The equation of a plane that passes through (1,2,3) and is at maximum distance from (-1,1,1) is

The equation of a plane that passes through (1,2,3) and is at maximum distance from (-1,1,1) is

Maths-General
General
Maths-

If the four faces of a tetrahedron are represented by the equations r with minus on top left parenthesis alpha i with minus on top plus beta j with minus on top right parenthesis equals 0 comma r with minus on top left parenthesis beta j with rightwards arrow on top plus gamma k with minus on top right parenthesis equals 0 comma r with minus on top left parenthesis gamma k with minus on top plus alpha i with rightwards arrow on top right parenthesis equals 0 and r with minus on top times left parenthesis alpha i with rightwards arrow on top plus beta j with minus on top plus gamma k with minus on top right parenthesis equals P then volume of the tetrahedron (in cubic units) is

If the four faces of a tetrahedron are represented by the equations r with minus on top left parenthesis alpha i with minus on top plus beta j with minus on top right parenthesis equals 0 comma r with minus on top left parenthesis beta j with rightwards arrow on top plus gamma k with minus on top right parenthesis equals 0 comma r with minus on top left parenthesis gamma k with minus on top plus alpha i with rightwards arrow on top right parenthesis equals 0 and r with minus on top times left parenthesis alpha i with rightwards arrow on top plus beta j with minus on top plus gamma k with minus on top right parenthesis equals P then volume of the tetrahedron (in cubic units) is

Maths-General
General
Maths-

If z subscript 1 comma z subscript 2 comma z subscript 3 are distinct non-zero complex numbers and a comma b comma c element of R to the power of plus end exponentsuch that fraction numerator a over denominator open vertical bar z subscript 1 end subscript minus z subscript 2 end subscript close vertical bar end fraction equals fraction numerator b over denominator open vertical bar z subscript 2 end subscript minus z subscript 3 end subscript close vertical bar end fraction equals fraction numerator c over denominator open vertical bar z subscript 3 end subscript minus z subscript 1 end subscript close vertical bar end fraction then fraction numerator a squared over denominator z subscript 1 minus z subscript 2 end fraction plus fraction numerator b squared over denominator z subscript 2 minus z subscript 3 end fraction plus fraction numerator c squared over denominator z subscript 3 minus z subscript 1 end fraction is always equal to

If z subscript 1 comma z subscript 2 comma z subscript 3 are distinct non-zero complex numbers and a comma b comma c element of R to the power of plus end exponentsuch that fraction numerator a over denominator open vertical bar z subscript 1 end subscript minus z subscript 2 end subscript close vertical bar end fraction equals fraction numerator b over denominator open vertical bar z subscript 2 end subscript minus z subscript 3 end subscript close vertical bar end fraction equals fraction numerator c over denominator open vertical bar z subscript 3 end subscript minus z subscript 1 end subscript close vertical bar end fraction then fraction numerator a squared over denominator z subscript 1 minus z subscript 2 end fraction plus fraction numerator b squared over denominator z subscript 2 minus z subscript 3 end fraction plus fraction numerator c squared over denominator z subscript 3 minus z subscript 1 end fraction is always equal to

Maths-General
parallel

card img

With Turito Academy.

card img

With Turito Foundation.

card img

Get an Expert Advice From Turito.

Turito Academy

card img

With Turito Academy.

Test Prep

card img

With Turito Foundation.