Question
For the solution (x, y) to the system of equations above, what is the value of x - y?
Hint:
Linear equations in two variables can be solved by using the elimination method.
Explanation:
- We have given a linear equation in two variables .
- We have to find the value of (x - y) for the solution (x, y)
- We will first solve the given equation using the elimination method, and then using the value of(x, y) , we can easily find the value of (x - y).
The correct answer is:
Step 1 of 1:
We have given an equation
Now, add both these equations, we will get .
On further calculation,
Now put this value of in the first equation
So, We will get
Step 2 of 2:
Now, we will calculate the value of x - y.
So,
Therefore, Option (b) is correct.
Related Questions to study
What is the sum of the solutions to
What is the sum of the solutions to
In the figure above, is parallel to . What is the length of ?
In the figure above, is parallel to . What is the length of ?
A study was done on the weights of different types of fish in a pond. A random sample of fish were caught and marked in order to ensure that none were weighed more than once. The sample contained 150 largemouth bass, of which 30% weighed more than 2 pounds. Which of the following conclusions is best supported by the sample data?
A study was done on the weights of different types of fish in a pond. A random sample of fish were caught and marked in order to ensure that none were weighed more than once. The sample contained 150 largemouth bass, of which 30% weighed more than 2 pounds. Which of the following conclusions is best supported by the sample data?
Between 1497 and 1500 , Amerigo Vespucci embarked on two voyages to the New World. According to Vespucci's letters, the first voyage lasted 43 days longer than the second voyage, and the two voyages combined lasted a total of 1,003 days. How many days did the second voyage last?
Between 1497 and 1500 , Amerigo Vespucci embarked on two voyages to the New World. According to Vespucci's letters, the first voyage lasted 43 days longer than the second voyage, and the two voyages combined lasted a total of 1,003 days. How many days did the second voyage last?
In 2008 , there were 21 states with 10 or more electoral votes, as shown in the table above. Based on the table, what was the median number of electoral votes for the 21 states?
In 2008 , there were 21 states with 10 or more electoral votes, as shown in the table above. Based on the table, what was the median number of electoral votes for the 21 states?
As part of an experiment, a ball was dropped and allowed to bounce repeatedly off the ground until it came to rest. The graph above represents the relationship between the time elapsed after the ball was dropped and the height of the ball above the ground. After it was dropped, how many times was the ball at a height of 2 feet?
As part of an experiment, a ball was dropped and allowed to bounce repeatedly off the ground until it came to rest. The graph above represents the relationship between the time elapsed after the ball was dropped and the height of the ball above the ground. After it was dropped, how many times was the ball at a height of 2 feet?
The total area of a coastal city is 92 square miles, of which 11.3 square miles is water. If the city had a population of 621,000 people in the year 2010 , which of the following is closest to the population density, in people per square mile of land area, of the city at that time?
The total area of a coastal city is 92 square miles, of which 11.3 square miles is water. If the city had a population of 621,000 people in the year 2010 , which of the following is closest to the population density, in people per square mile of land area, of the city at that time?
What value of t is the solution of the equation above?
What value of t is the solution of the equation above?
Which of the following expressions is equivalent to , for x > 3 ?
Which of the following expressions is equivalent to , for x > 3 ?
A customer's monthly water bill was . Due to a rate increase, her monthly bill is now .To the nearest tenth of a percent, by what percent did the amount of the customer's water bill increase?
A customer's monthly water bill was . Due to a rate increase, her monthly bill is now .To the nearest tenth of a percent, by what percent did the amount of the customer's water bill increase?
If for positive integers a and b , what is one possible value of b ?
If for positive integers a and b , what is one possible value of b ?
The table above shows the flavors of ice cream and the toppings chosen by the people at a party. Each person chose one flavor of ice cream and one topping. Of the people who chose vanilla ice cream, what fraction chose hot fudge as a topping?
The table above shows the flavors of ice cream and the toppings chosen by the people at a party. Each person chose one flavor of ice cream and one topping. Of the people who chose vanilla ice cream, what fraction chose hot fudge as a topping?
Some values of the linear function are shown in the table above. What is the value of ?
Some values of the linear function are shown in the table above. What is the value of ?
What is the solution set of the equation above?
What is the solution set of the equation above?
A gear ratio r:s is the ratio of the number of teeth of two connected gears. The ratio of the number of revolutions per minute (rpm) of two gear wheels is s:r. In the diagram below, Gear A is turned by a motor. The turning of Gear A causes Gears B and C to turn as well.
If Gear A is rotated by the motor at a rate of 100 rpm, what is the number of revolutions per minute for Gear C?
The number of teeth has an inverse relationship with revolutions per minute (rpm) when two gears are mashed. Two quantities are considered to be in inverse proportion when they are related to one another in this way, that Two quantities are considered to be in inverse proportion when they are related to one another when a rise in one quantity causes a reduction in the other and vice versa. The sum of the two provided quantities equals a constant amount in inverse proportion. The inverse proportion formula can establish a relationship between two inversely proportional quantities. Assume that x decreases when y increases and vice versa for the two numbers, x and y. Example: The relationship between time and speed is inverse. The time it takes us to travel a certain distance lowers as our speed rises. Using speed as y and time as x, where y and x are inversely proportional, the formula is written as y = k/x.s, when a rise in one quantity causes a reduction in the other and vice versa. The sum of the two provided quantities equals a constant amount in inverse proportion. The inverse proportion formula can establish a relationship between two inversely proportional quantities. Assume that x decreases when y increases and vice versa for the two numbers, x and y. Example: The relationship between time and speed is inverse. The time it takes us to travel a certain distance lowers as our speed rises. Using speed as y and time as x, y, x are inversely proportional and are technically represented as inverse proportion formula. The inverse proportional formula is written as,
y = k/x
A gear ratio r:s is the ratio of the number of teeth of two connected gears. The ratio of the number of revolutions per minute (rpm) of two gear wheels is s:r. In the diagram below, Gear A is turned by a motor. The turning of Gear A causes Gears B and C to turn as well.
If Gear A is rotated by the motor at a rate of 100 rpm, what is the number of revolutions per minute for Gear C?
The number of teeth has an inverse relationship with revolutions per minute (rpm) when two gears are mashed. Two quantities are considered to be in inverse proportion when they are related to one another in this way, that Two quantities are considered to be in inverse proportion when they are related to one another when a rise in one quantity causes a reduction in the other and vice versa. The sum of the two provided quantities equals a constant amount in inverse proportion. The inverse proportion formula can establish a relationship between two inversely proportional quantities. Assume that x decreases when y increases and vice versa for the two numbers, x and y. Example: The relationship between time and speed is inverse. The time it takes us to travel a certain distance lowers as our speed rises. Using speed as y and time as x, where y and x are inversely proportional, the formula is written as y = k/x.s, when a rise in one quantity causes a reduction in the other and vice versa. The sum of the two provided quantities equals a constant amount in inverse proportion. The inverse proportion formula can establish a relationship between two inversely proportional quantities. Assume that x decreases when y increases and vice versa for the two numbers, x and y. Example: The relationship between time and speed is inverse. The time it takes us to travel a certain distance lowers as our speed rises. Using speed as y and time as x, y, x are inversely proportional and are technically represented as inverse proportion formula. The inverse proportional formula is written as,
y = k/x