Question
Identify the variable that can be eliminated.
4x + 8y = 20
-4x + 2y = -30
- The x
- The y
- The z
- The unknown
Hint:
In that question , we have given by two equation , 4x + 8y = 20 and -4x + 2y = -30. We have to find the variable which eliminate. For that, solve the equation by elimination method . In solving which variable look easily to eliminate that will our answer .
The correct answer is: The x
Here we have to find the variable that can be eliminate .
Firstly, we have given by two equations.
4x + 8y = 20 ---(1)
-4x + 2y = -30 --(2)
Now, adding equation(1) and equation(2) we have,
4x + 8y = 20
- 4x + 2y = -30
------------------------------
0 + 10y = - 10
y = -1
Therefore, The variable which eliminate is x.
The correct answer is the x.
The x variable can be eliminated by crossing out the 4x and -4x.
In this question, we have to figure out the variable that can be eliminated . For that just solve the equation by elimination method and find out the variable which is eliminate.
Related Questions to study
Solve by elimination:
4x + 9y = 28
-4x - y = -28
In this question , we have give two linear equation and we have to solve it by elimination method. In elimination method you have two equation. we have to multiply in both equation by number which is lowest common multiple for one of the variable. Then perform the addition or subtraction to eliminate the variable and substitute the that variable in equation and find the other equation.
Solve by elimination:
4x + 9y = 28
-4x - y = -28
In this question , we have give two linear equation and we have to solve it by elimination method. In elimination method you have two equation. we have to multiply in both equation by number which is lowest common multiple for one of the variable. Then perform the addition or subtraction to eliminate the variable and substitute the that variable in equation and find the other equation.
Find the equivalent equation for the following.
3x - 2y = 8
In this question, we have to find the equivalent equation . Equivalent means equals. Equivalent equations are algebraic equation that have identical solution or roots.
Find the equivalent equation for the following.
3x - 2y = 8
In this question, we have to find the equivalent equation . Equivalent means equals. Equivalent equations are algebraic equation that have identical solution or roots.
Solve the system of Equation (x,y) by the method of elimination:
x + 12y = 15
–x –2y = -5
In this question , we have to solve the system of equation by elimination method. In elimination method you have two equation. we have to multiply in both equation by number which is lowest common multiple for one of the variable. Then perform the addition or subtraction to eliminate the variable and substitute the that variable in equation and find the other equation.
Solve the system of Equation (x,y) by the method of elimination:
x + 12y = 15
–x –2y = -5
In this question , we have to solve the system of equation by elimination method. In elimination method you have two equation. we have to multiply in both equation by number which is lowest common multiple for one of the variable. Then perform the addition or subtraction to eliminate the variable and substitute the that variable in equation and find the other equation.
The first step in finding the solution with elimination is _____________.
18x + y = -10
-18x - 9y = 6
In this question, we have to find the first step but the equation is solved by the elimination method. In elimination method you have two equation. we have to multiply in both equation by number which is lowest common multiple for one of the variable. Then perform the addition or subtraction to eliminate the variable and substitute the that variable in equation and find the other equation.
The first step in finding the solution with elimination is _____________.
18x + y = -10
-18x - 9y = 6
In this question, we have to find the first step but the equation is solved by the elimination method. In elimination method you have two equation. we have to multiply in both equation by number which is lowest common multiple for one of the variable. Then perform the addition or subtraction to eliminate the variable and substitute the that variable in equation and find the other equation.
Solve the following pair of linear equations by the method of elimination:
2x + 5y = 10
3x – 5y = 20
In this question , we have give two linear equation and we have to solve it by elimination method. In elimination method you have two equation. we have to multiply in both equation by number which is lowest common multiple for one of the variable. Then perform the addition or subtraction to eliminate the variable and substitute the that variable in equation and find the other equation.
Solve the following pair of linear equations by the method of elimination:
2x + 5y = 10
3x – 5y = 20
In this question , we have give two linear equation and we have to solve it by elimination method. In elimination method you have two equation. we have to multiply in both equation by number which is lowest common multiple for one of the variable. Then perform the addition or subtraction to eliminate the variable and substitute the that variable in equation and find the other equation.
Find the equivalent equation for the following.
4x - 2y = 12
In this question, we have to find the equivalent equation . Equivalent means equals. Equivalent equations are algebraic equation that have identical solution or roots.
Find the equivalent equation for the following.
4x - 2y = 12
In this question, we have to find the equivalent equation . Equivalent means equals. Equivalent equations are algebraic equation that have identical solution or roots.
Solve the following pair of linear equations by the method of elimination:
2x + 5y = 8
3x – 5y = 17
In this question , we have give two linear equation and we have to solve it by elimination method. In elimination method you have two equation. we have to multiply in both equation by number which is lowest common multiple for one of the variable. Then perform the addition or subtraction to eliminate the variable and substitute the that variable in equation and find the other equation.
Solve the following pair of linear equations by the method of elimination:
2x + 5y = 8
3x – 5y = 17
In this question , we have give two linear equation and we have to solve it by elimination method. In elimination method you have two equation. we have to multiply in both equation by number which is lowest common multiple for one of the variable. Then perform the addition or subtraction to eliminate the variable and substitute the that variable in equation and find the other equation.
The first step in finding the solution with elimination is ________________
21x + 18y = -22
-21x - 2y = 17
In this question, we have to find the first step but the equation is solved by the elimination method. In elimination method you have two equation. we have to multiply in both equation by number which is lowest common multiple for one of the variable. Then perform the addition or subtraction to eliminate the variable and substitute the that variable in equation and find the other equation.
The first step in finding the solution with elimination is ________________
21x + 18y = -22
-21x - 2y = 17
In this question, we have to find the first step but the equation is solved by the elimination method. In elimination method you have two equation. we have to multiply in both equation by number which is lowest common multiple for one of the variable. Then perform the addition or subtraction to eliminate the variable and substitute the that variable in equation and find the other equation.
Solve the following pair of linear equations by the method of elimination:
y = 4x – 7
16x – 5y = 25
In this question , we have give two linear equation and we have to solve it by elimination method. In elimination method you have two equation. we have to multiply in both equation by number which is lowest common multiple for one of the variable. Then perform the addition or subtraction to eliminate the variable and substitute the that variable in equation and find the other equation.
Solve the following pair of linear equations by the method of elimination:
y = 4x – 7
16x – 5y = 25
In this question , we have give two linear equation and we have to solve it by elimination method. In elimination method you have two equation. we have to multiply in both equation by number which is lowest common multiple for one of the variable. Then perform the addition or subtraction to eliminate the variable and substitute the that variable in equation and find the other equation.
If a system of equations has no solution, the graph looks like,
In this question, we have to what graph is look likes in no solution. No solution means graph will never intersect with each other and its only possible if graph are parallel. The no solution graph are always parallel.
If a system of equations has no solution, the graph looks like,
In this question, we have to what graph is look likes in no solution. No solution means graph will never intersect with each other and its only possible if graph are parallel. The no solution graph are always parallel.
Find the equivalent equation for the following.
4x - 9y = -7
In this question, we have to find the equivalent equation . Equivalent means equals. Equivalent equations are algebraic equation that have identical solution or roots.
Find the equivalent equation for the following.
4x - 9y = -7
In this question, we have to find the equivalent equation . Equivalent means equals. Equivalent equations are algebraic equation that have identical solution or roots.
Solve the following pair of linear equations by the method of elimination:
2x + 3y = 8
2x = 2 + 3y
In this question, we have already given the value of y. Using elimination, method we are easily to solve this particular problem.
Solve the following pair of linear equations by the method of elimination:
2x + 3y = 8
2x = 2 + 3y
In this question, we have already given the value of y. Using elimination, method we are easily to solve this particular problem.
The best method that would be used in solving the following system of equations is ______________________.
3x + 2y = 16
7x − 2y = 19
In this question, we have to find the first step but the equation is solved by the elimination method. In elimination method you have two equation. we have to multiply in both equation by number which is lowest common multiple for one of the variable. Then perform the addition or subtraction to eliminate the variable and substitute the that variable in equation and find the other equation.
The best method that would be used in solving the following system of equations is ______________________.
3x + 2y = 16
7x − 2y = 19
In this question, we have to find the first step but the equation is solved by the elimination method. In elimination method you have two equation. we have to multiply in both equation by number which is lowest common multiple for one of the variable. Then perform the addition or subtraction to eliminate the variable and substitute the that variable in equation and find the other equation.
Solve the system of Equation (x,y) by the method of elimination:
x + 3y = 9
–x –2y = -5
In this question , we have to solve the system of equation by elimination method. In elimination method you have two equation. we have to multiply in both equation by number which is lowest common multiple for one of the variable. Then perform the addition or subtraction to eliminate the variable and substitute the that variable in equation and find the other equation.
Solve the system of Equation (x,y) by the method of elimination:
x + 3y = 9
–x –2y = -5
In this question , we have to solve the system of equation by elimination method. In elimination method you have two equation. we have to multiply in both equation by number which is lowest common multiple for one of the variable. Then perform the addition or subtraction to eliminate the variable and substitute the that variable in equation and find the other equation.
The first step in finding the solution with elimination is,
3x + 9y = -9
-3x -y = 5
In this question, we have to find the first step but the equation is solved by the elimination method. In elimination method you have two equation. we have to multiply in both equation by number which is lowest common multiple for one of the variable. Then perform the addition or subtraction to eliminate the variable and substitute the that variable in equation and find the other equation.
The first step in finding the solution with elimination is,
3x + 9y = -9
-3x -y = 5
In this question, we have to find the first step but the equation is solved by the elimination method. In elimination method you have two equation. we have to multiply in both equation by number which is lowest common multiple for one of the variable. Then perform the addition or subtraction to eliminate the variable and substitute the that variable in equation and find the other equation.