Mathematics
Grade-8
Easy

Question

The measure of the exterior angle of a triangle is 107. If one of the remote interior angles is 31o, find the measure of the other interior angle.

  1. 64o
  2. 31o
  3. 76o
  4. 1070

hintHint:

The exterior angle theorem states that the measure of an exterior angle is equal to the sum of the
measures of the two remote interior angles of the triangle. The remote interior angles are also called
opposite interior angles.

The correct answer is: 76o


    The exterior angle theorem states that the measure of an exterior angle is equal to the sum of the
    measures of the two remote interior angles of the triangle. The remote interior angles are also called
    opposite interior angles.
    Let the measure of the other interior angle = x
    x+31=107
    x=107-31
    x=76

    Related Questions to study

    Grade-8
    Mathematics

    text  If  end text l ‖ m comma text  then  end text angle b text  and  end text angle f text  are  end text________________.

    text  If  end text l ‖ m comma text  then  end text angle b text  and  end text angle f text  are  end text________________.

    MathematicsGrade-8
    Grade-8
    Mathematics

    Find the measure of the missing angle x of the triangle.

    Find the measure of the missing angle x of the triangle.

    MathematicsGrade-8
    Grade-8
    Mathematics

    Find the measure of the unknown angle in the given triangle.

    Find the measure of the unknown angle in the given triangle.

    MathematicsGrade-8
    parallel
    Grade-8
    Mathematics

    Find the measure of the angle d.

    Find the measure of the angle d.

    MathematicsGrade-8
    Grade-8
    Mathematics

    In the given figure, angle d is the sum of _____________

    In the given figure, angle d is the sum of _____________

    MathematicsGrade-8
    Grade-8
    Mathematics

    The measures of two angles of a triangle are 54o and 32, find the third angle.
    1060189

    The measures of two angles of a triangle are 54o and 32, find the third angle.
    1060189

    MathematicsGrade-8
    parallel
    Grade-8
    Mathematics

    Can a triangle have interior angle measures as 30, 45o, and 90o ?

    Can a triangle have interior angle measures as 30, 45o, and 90o ?

    MathematicsGrade-8
    Grade-8
    Mathematics

    Can a triangle have the sides as 3 cm, 4 cm, and 6 cm?

    Can a triangle have the sides as 3 cm, 4 cm, and 6 cm?

    MathematicsGrade-8
    Grade-8
    Mathematics

    Define the measures of angles opposite to equal sides in a triangle?

    Define the measures of angles opposite to equal sides in a triangle?

    MathematicsGrade-8
    parallel
    Grade-8
    Mathematics

    What is the measure of each angle of an equilateral triangle?

    What is the measure of each angle of an equilateral triangle?

    MathematicsGrade-8
    Grade-8
    Mathematics

    In which triangle all three sides are of equal measure?

    In which triangle all three sides are of equal measure?

    MathematicsGrade-8
    Grade-8
    Mathematics

    Find the vertices of each of the figures of rotation 900 counter-clockwise about the origin

    Given Data:

    >>From figure, the vertices of the triangle are:
    B(-5,0) and E(-2,1) and G(-2, -3).
    >>>let, the point (x, y) be in the space and the Angle of Rotation becomes alpha= 90.
    >>>new coordinates are:
     (x cosalpha - y sinalpha , y cosalpha + x sinalpha)
    = (x cos90 -y sin90 , y cos90 + x sin90)
    = (-y, x).
    * Hence, the final coordinates after rotation through 90 degrees counter clockwise are (-y, x).
    >>>Similarly, for the coordinates B(-5,0) and E(-2,1) and G(-2, -3) the rotation of points through 90 degrees counter clock wise becomes:
    B(0,-5) and E(3, -2) and G(3,2).
    ***Therefore, the coordinates of triangle B(-5,0) and E(-2,1) and G(-2, -3) after rotation through 90 degrees counter clockwise becomes  B(0,-5) and E(3, -2) and G(3,2).

    Find the vertices of each of the figures of rotation 900 counter-clockwise about the origin

    MathematicsGrade-8

    Given Data:

    >>From figure, the vertices of the triangle are:
    B(-5,0) and E(-2,1) and G(-2, -3).
    >>>let, the point (x, y) be in the space and the Angle of Rotation becomes alpha= 90.
    >>>new coordinates are:
     (x cosalpha - y sinalpha , y cosalpha + x sinalpha)
    = (x cos90 -y sin90 , y cos90 + x sin90)
    = (-y, x).
    * Hence, the final coordinates after rotation through 90 degrees counter clockwise are (-y, x).
    >>>Similarly, for the coordinates B(-5,0) and E(-2,1) and G(-2, -3) the rotation of points through 90 degrees counter clock wise becomes:
    B(0,-5) and E(3, -2) and G(3,2).
    ***Therefore, the coordinates of triangle B(-5,0) and E(-2,1) and G(-2, -3) after rotation through 90 degrees counter clockwise becomes  B(0,-5) and E(3, -2) and G(3,2).

    parallel
    Grade-8
    Mathematics

    Find the vertices of each of the figure of rotation 900 clockwise about the origin

    Given Data:
                          
    * From figure, the points are K(2, -2) and U(3, 3) and T(5, 0) are the vertices of the triangle.
    >>Let (x, y) be the point in the space and angle of rotation becomes alpha= -90 degrees.
    *Then, the new coordinates are :
    (x cosalpha - y sinalpha , y cosalpha + x sinalpha)
                      = (x cos(-90) -y sin(-90) , y cos(-90) + x sin(-90))
                      = (y, -x).
    >>Then, the new coordinates are (y, -x).
    >>>Similarly, the rotation of triangular vertices K(2, -2) and U(3, 3) and T(5, 0) through 90 degrees clockwise becomes :
                                      K(-2, -2) and U(3, -3) and T(0, -5).
    *Therefore, the vertices K(2, -2) and U(3, 3) and T(5, 0) after rotation through 90 degrees clockwise becomes  K(-2, -2) and U(3, -3) and T(0, -5).

    Find the vertices of each of the figure of rotation 900 clockwise about the origin

    MathematicsGrade-8

    Given Data:
                          
    * From figure, the points are K(2, -2) and U(3, 3) and T(5, 0) are the vertices of the triangle.
    >>Let (x, y) be the point in the space and angle of rotation becomes alpha= -90 degrees.
    *Then, the new coordinates are :
    (x cosalpha - y sinalpha , y cosalpha + x sinalpha)
                      = (x cos(-90) -y sin(-90) , y cos(-90) + x sin(-90))
                      = (y, -x).
    >>Then, the new coordinates are (y, -x).
    >>>Similarly, the rotation of triangular vertices K(2, -2) and U(3, 3) and T(5, 0) through 90 degrees clockwise becomes :
                                      K(-2, -2) and U(3, -3) and T(0, -5).
    *Therefore, the vertices K(2, -2) and U(3, 3) and T(5, 0) after rotation through 90 degrees clockwise becomes  K(-2, -2) and U(3, -3) and T(0, -5).

    Grade-8
    Mathematics

    Find the vertices of each of the figure of rotation 1800 about the origin

    Given Data:

    >>From figure, the coordinates of the points w, u, x are.
    >>> W(-4, -3) and U(4, 0) and X(-3, -2) are the required coordinates of a triangle.
    >>Let, (x, y) be the point in the space and are rotated through 180 degrees.
    Then, the new coordinates are:
     (x cosalpha - y sinalpha , y cosalpha + x sinalpha)
    = (x cos180 -y sin180 , y cos180 + xsin180)
    = (-x , -y)
    * Then, the new coordinates of (x, y) after rotation through 180 degrees is (-x, -y).
    >>>Similarly, for  W(-4, -3) and U(4, 0) and X(-3, -2) the new coordinates are:
    W(4, 3) and U(-4, 0) and (3, 2).
    >>>Hence, the rotation of points W(-4, -3) and U(4, 0) and X(-3, -2) through 180 degrees becomes  W(4, 3) and U(-4, 0) and (3, 2).

    Find the vertices of each of the figure of rotation 1800 about the origin

    MathematicsGrade-8

    Given Data:

    >>From figure, the coordinates of the points w, u, x are.
    >>> W(-4, -3) and U(4, 0) and X(-3, -2) are the required coordinates of a triangle.
    >>Let, (x, y) be the point in the space and are rotated through 180 degrees.
    Then, the new coordinates are:
     (x cosalpha - y sinalpha , y cosalpha + x sinalpha)
    = (x cos180 -y sin180 , y cos180 + xsin180)
    = (-x , -y)
    * Then, the new coordinates of (x, y) after rotation through 180 degrees is (-x, -y).
    >>>Similarly, for  W(-4, -3) and U(4, 0) and X(-3, -2) the new coordinates are:
    W(4, 3) and U(-4, 0) and (3, 2).
    >>>Hence, the rotation of points W(-4, -3) and U(4, 0) and X(-3, -2) through 180 degrees becomes  W(4, 3) and U(-4, 0) and (3, 2).

    Grade-8
    Mathematics

    What will be the coordinates of the image of ABC with points A (-3,4) B (0, 1), C (-5, 2) after it is rotated 90o counter-clockwise about the origin?

    Given That:
                        A (-3,4) B (0, 1), C (-5, 2) are the vertices of a triangle.
    >>>The vertices of a triangle are rotated through 90 degrees counter clockwise direction.
    >>>Let, the point on the space be (x, y). Then Angle of Rotation alpha becomes 90 degrees.
    >>>Hence, new coordinates are:
                                     = (x cosalpha - y sinalpha , y cosalpha + x sinalpha)
                                     = (x cos90 - y sin90 , y cos90 + x sin90)
                                     = (-y , x).
    >>>Similarly, the rotation of the points  A (-3,4) B (0, 1), C (-5, 2)  becomes:
                    A(-4,-3) and B(-1,0) and C(-2, -5).
    ***Therefore, the triangle vertices A (-3,4) B (0, 1), C (-5, 2)  after rotation through 90 degrees counter clockwise are   A(-4,-3) and B(-1,0) and C(-2, -5).

    What will be the coordinates of the image of ABC with points A (-3,4) B (0, 1), C (-5, 2) after it is rotated 90o counter-clockwise about the origin?

    MathematicsGrade-8

    Given That:
                        A (-3,4) B (0, 1), C (-5, 2) are the vertices of a triangle.
    >>>The vertices of a triangle are rotated through 90 degrees counter clockwise direction.
    >>>Let, the point on the space be (x, y). Then Angle of Rotation alpha becomes 90 degrees.
    >>>Hence, new coordinates are:
                                     = (x cosalpha - y sinalpha , y cosalpha + x sinalpha)
                                     = (x cos90 - y sin90 , y cos90 + x sin90)
                                     = (-y , x).
    >>>Similarly, the rotation of the points  A (-3,4) B (0, 1), C (-5, 2)  becomes:
                    A(-4,-3) and B(-1,0) and C(-2, -5).
    ***Therefore, the triangle vertices A (-3,4) B (0, 1), C (-5, 2)  after rotation through 90 degrees counter clockwise are   A(-4,-3) and B(-1,0) and C(-2, -5).

    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.