Maths-
General
Easy

Question

A tea party is arranged of 16 persons along two sides of a long table with 8 chairs on each side. 4 men wish to sit on one particular side and 2 on the other side. In how many ways can they be seated ?

  1. 8P4 × 8P2    
  2. 210 cross times8! cross times8!  
  3. 8P4 × 10!    
  4. None of these    

hintHint:

In this question we have in total 16 seats with 8 on each side of the table. Firstly make these 4+2=6 people sit who have special demand in sitting arrangements. Now when these 6 people are taken care of we are left with 10 people and 4 seats on one side and 6 seats on the other side, use this concept to get the answer.

The correct answer is: 210 cross times8! cross times8!


    Detailed Solution
    There are 16 people for the tea party.

    People sit along a long table with 8 chairs on each side.

    Out of 16, 4 people sit on a particular side and 2 sit on the other side.

    Therefore first we will make sitting arrangements for those 6 persons who want to sit on some specific side.
    Now we have remaining (16 - 6) =10 persons to arrange and out of 10, six people can sit on one side as only 6 seats will be reaming after making 2 people sit on one side on special demand and 4 people on other side as 4 people are already being seated on one side on special demand. (Take into consideration that one side has only 8 seats)
    The number of ways of choosing 6 people out of 10 are scriptbase C subscript 6 end scriptbase presuperscript 10  now there are 4 people remaining and they will automatically place in those 4 seats available on the other side therefore total arrangement for those four people are  scriptbase C subscript 4 space equals 1 end scriptbase presuperscript 4
    And now all the 16 people are placed in their seats according to the constraints. 

    Now we have to arrange them.


    So, the number of ways of arranging 8 people out of 16 on one side and the rest 8 people on other side is (8! cross times8!)

    S o comma space a space p o s s i b l e space n u m b e r space o f space a r r a n g e m e n t s space w i l l space b e space space rightwards double arrow space scriptbase C subscript 6 space cross times space scriptbase C subscript 4 space cross times end scriptbase presuperscript 4 space 8 factorial space cross times space 8 factorial end scriptbase presuperscript 10
    N o w space a s space w e space k n o w space scriptbase C subscript r space end subscript end scriptbase presuperscript n equals space fraction numerator n factorial over denominator r factorial left parenthesis n minus r right parenthesis factorial. end fraction

    S o comma space space scriptbase C subscript 6 end scriptbase presuperscript 10 space equals space fraction numerator 10 factorial over denominator 6 factorial space 4 factorial end fraction space equals space 210

a n d space space scriptbase C subscript 4 space equals space 1 end scriptbase presuperscript 4

    So, total number of arrangements is space equals space space 210 space cross times space 8 factorial space cross times 8 factorial

    Whenever we face such types of problems the key point is to make special arrangements for the people who are in need of it, then arrange the remaining. Now combination comes with permutation as there are possibilities of these 8 people sitting on one side to rearrange. Thus this concept into consideration, to get through the answer.

    Related Questions to study

    General
    Maths-

    If (m+n) P2 = 56 and m–nP2 = 12 then (m, n) equals-

    If (m+n) P2 = 56 and m–nP2 = 12 then (m, n) equals-

    Maths-General
    General
    physics-

    A thin uniform annular disc (see figure) of mass M has outer radius 4 R and inner radius 3 R. The work required to take a unit mass from point P on its axis to infinity is

    A thin uniform annular disc (see figure) of mass M has outer radius 4 R and inner radius 3 R. The work required to take a unit mass from point P on its axis to infinity is

    physics-General
    General
    physics-

    The two bodies of mass m subscript 1 end subscript and m subscript 2 end subscript left parenthesis m subscript 1 end subscript greater than m subscript 2 end subscript right parenthesis respectively are tied to the ends of a massless string, which passes over a light and frictionless pulley. The masses are initially at rest and the released. Then acceleration of the centre of mass of the system is

    The two bodies of mass m subscript 1 end subscript and m subscript 2 end subscript left parenthesis m subscript 1 end subscript greater than m subscript 2 end subscript right parenthesis respectively are tied to the ends of a massless string, which passes over a light and frictionless pulley. The masses are initially at rest and the released. Then acceleration of the centre of mass of the system is

    physics-General
    parallel
    General
    maths-

    If x equals 1 plus 3 a plus 6 a squared plus 10 a cubed plus midline horizontal ellipsis. to straight infinity terms, vertical line a vertical line less than 1 comma y equals 1 plus 4 a plus 10 a squared plus 20 a cubed plus midline horizontal ellipsis straight infinity terms, vertical line a vertical line less than 1, then x colon y

    If x equals 1 plus 3 a plus 6 a squared plus 10 a cubed plus midline horizontal ellipsis. to straight infinity terms, vertical line a vertical line less than 1 comma y equals 1 plus 4 a plus 10 a squared plus 20 a cubed plus midline horizontal ellipsis straight infinity terms, vertical line a vertical line less than 1, then x colon y

    maths-General
    General
    Maths-

    The coefficient of x to the power of negative n end exponent in left parenthesis 1 plus x right parenthesis to the power of n end exponent open parentheses 1 plus fraction numerator 1 over denominator x end fraction close parentheses to the power of n end exponent is

    The coefficient of x to the power of negative n end exponent in left parenthesis 1 plus x right parenthesis to the power of n end exponent open parentheses 1 plus fraction numerator 1 over denominator x end fraction close parentheses to the power of n end exponent is

    Maths-General
    General
    maths-

    open parentheses 1 plus x plus x squared plus horizontal ellipsis plus x to the power of p close parentheses to the power of n equals a subscript 0 plus a subscript 1 x plus a subscript 2 x squared plus horizontal ellipsis plus a subscript n p end subscript x to the power of n p end exponent not stretchy rightwards double arrow a subscript 1 plus 2 a subscript 2 plus 3 a subscript 3 plus horizontal ellipsis plus n p

    open parentheses 1 plus x plus x squared plus horizontal ellipsis plus x to the power of p close parentheses to the power of n equals a subscript 0 plus a subscript 1 x plus a subscript 2 x squared plus horizontal ellipsis plus a subscript n p end subscript x to the power of n p end exponent not stretchy rightwards double arrow a subscript 1 plus 2 a subscript 2 plus 3 a subscript 3 plus horizontal ellipsis plus n p

    maths-General
    parallel
    General
    chemistry-

    Compounds (A) and (B) are – 

    Compounds (A) and (B) are – 

    chemistry-General
    General
    Maths-

    2 times C subscript 0 plus 5 times C subscript 1 plus 8 times C subscript 2 plus horizontal ellipsis plus left parenthesis 2 plus 3 n right parenthesis times C subscript n equals

    2 times C subscript 0 plus 5 times C subscript 1 plus 8 times C subscript 2 plus horizontal ellipsis plus left parenthesis 2 plus 3 n right parenthesis times C subscript n equals

    Maths-General
    General
    maths-

    A triangle is inscribed in a circle. The vertices of the triangle divide the circle into three arcs of length 3, 4 and 5 units. Then area of the triangle is equal to:

    A triangle is inscribed in a circle. The vertices of the triangle divide the circle into three arcs of length 3, 4 and 5 units. Then area of the triangle is equal to:

    maths-General
    parallel
    General
    Maths-

    If one root of the equation a x squared plus b x plus c equals 0 is reciprocal of the one of the roots of equation  a subscript 1 x squared plus b subscript 1 x plus c subscript 1 equals 0 then

    If one root of the equation a x squared plus b x plus c equals 0 is reciprocal of the one of the roots of equation  a subscript 1 x squared plus b subscript 1 x plus c subscript 1 equals 0 then

    Maths-General
    General
    Maths-

    If the quadratic equation a x squared plus 2 c x plus b equals 0 and a x squared plus 2 b x plus c equals 0 left parenthesis b not equal to c right parenthesis have a common root then a plus 4 b plus 4 c is equal to

    If the quadratic equation a x squared plus 2 c x plus b equals 0 and a x squared plus 2 b x plus c equals 0 left parenthesis b not equal to c right parenthesis have a common root then a plus 4 b plus 4 c is equal to

    Maths-General
    General
    physics-

    Two blocks of masses 10 kg and 4 kg are connected by a spring of negligible mass and placed on frictionless horizontal surface. An impulsive force gives a velocity of 14m s to the power of negative 1 end exponent to the heavier block in the direction of the lighter block. The velocity of centre of mass of the system at that very moment is

    Two blocks of masses 10 kg and 4 kg are connected by a spring of negligible mass and placed on frictionless horizontal surface. An impulsive force gives a velocity of 14m s to the power of negative 1 end exponent to the heavier block in the direction of the lighter block. The velocity of centre of mass of the system at that very moment is

    physics-General
    parallel
    General
    Maths-

    In a Δabc if b+c=3a then cot invisible function application straight B over 2 times cot invisible function application straight C over 2 has the value equal to –

    In a Δabc if b+c=3a then cot invisible function application straight B over 2 times cot invisible function application straight C over 2 has the value equal to –

    Maths-General
    General
    Maths-

    In a capital delta A B C open parentheses fraction numerator a to the power of 2 end exponent over denominator sin invisible function application A end fraction plus fraction numerator b to the power of 2 end exponent over denominator sin invisible function application B end fraction plus fraction numerator c to the power of 2 end exponent over denominator sin invisible function application C end fraction close parentheses times s i n invisible function application fraction numerator A over denominator 2 end fraction s i n invisible function application fraction numerator B over denominator 2 end fraction s i n invisible function application fraction numerator C over denominator 2 end fraction simplifies to

    In a capital delta A B C open parentheses fraction numerator a to the power of 2 end exponent over denominator sin invisible function application A end fraction plus fraction numerator b to the power of 2 end exponent over denominator sin invisible function application B end fraction plus fraction numerator c to the power of 2 end exponent over denominator sin invisible function application C end fraction close parentheses times s i n invisible function application fraction numerator A over denominator 2 end fraction s i n invisible function application fraction numerator B over denominator 2 end fraction s i n invisible function application fraction numerator C over denominator 2 end fraction simplifies to

    Maths-General
    General
    Maths-

    In a triangle ABC, a: b: c = 4: 5: 6. Then 3A + B equals to :

    In a triangle ABC, a: b: c = 4: 5: 6. Then 3A + B equals to :

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.