Maths-
General
Easy

Question

ABC is an equilateral triangle such that the vertices B and C lie on two parallel lines at a distance 6 If A lies between the parallel lines at a distance 4 from one of them then the length of a side of the equilateral triangle is

  1. 8
  2. square root of 88 over 3 end root
  3. fraction numerator 4 square root of 7 over denominator square root of 3 end fraction
  4. None of these

hintHint:

In equilateral triangle the sides and the angles remains equal and then apply these and then evaluate the side of a triangle.

The correct answer is: fraction numerator 4 square root of 7 over denominator square root of 3 end fraction


    Given That:
                          BO=6   and   OA=4
    >>> Let length of side of ΔABC=a
                acosθ=6 ----(1)
                ∠AB90(60+θ)
                           = 30θ
    >>>So, a(sin(30θ))=4 ----(2)
    >>> from 1 and 2, we get:
                     a(fraction numerator cos theta over denominator 2 end fraction minus fraction numerator sin theta square root of 3 over denominator 2 end fraction)​ = 4
    >>>3 minus 4 space equals space fraction numerator a square root of 3 over denominator 2 end fraction square root of 1 minus 36 over a squared end root
                1 space equals space fraction numerator 3 a squared over denominator 4 end fraction minus 27
                fraction numerator 3 a squared over denominator 4 end fraction space equals space 28
                     a = fraction numerator 4 square root of 7 over denominator square root of 3 end fraction
    >>> Therefore, the value of a is fraction numerator 4 square root of 7 over denominator square root of 3 end fraction.
     

     >>> acosθ=6 ----(1)
     >>> a(sin(30θ))=4 ----(2)
    >>> a = fraction numerator 4 square root of 7 over denominator square root of 3 end fraction

    Related Questions to study

    General
    Maths-

    If the point left parenthesis 1 plus cos invisible function application theta comma sin invisible function application theta right parenthesis lies between the region corresponding to the acute angle between the lines x-3y=0 and x-6y=0 then

    >>> L11 cross times L22 <0
    >>>   (1+costheta)2 -6sintheta -6sinthetacostheta -3sintheta-3sinthetacostheta+18sintheta2 < 0

    If the point left parenthesis 1 plus cos invisible function application theta comma sin invisible function application theta right parenthesis lies between the region corresponding to the acute angle between the lines x-3y=0 and x-6y=0 then

    Maths-General

    >>> L11 cross times L22 <0
    >>>   (1+costheta)2 -6sintheta -6sinthetacostheta -3sintheta-3sinthetacostheta+18sintheta2 < 0

    General
    Maths-

    If P open parentheses 1 plus fraction numerator alpha over denominator square root of 2 end fraction comma 2 plus fraction numerator alpha over denominator square root of 2 end fraction close parentheses be any point on a line then the range of  for which the point ' P ' lies between the parallel lines x+2y=1 and 2x+4y=15 is

    ((1+fraction numerator alpha over denominator square root of 2 end fraction)+2(2 plus fraction numerator alpha over denominator square root of 2 end fraction) -1).(2 left parenthesis 1 plus fraction numerator alpha over denominator square root of 2 end fraction right parenthesis plus 4 left parenthesis 2 plus fraction numerator alpha over denominator square root of 2 end fraction right parenthesis minus 15) < 0

    If P open parentheses 1 plus fraction numerator alpha over denominator square root of 2 end fraction comma 2 plus fraction numerator alpha over denominator square root of 2 end fraction close parentheses be any point on a line then the range of  for which the point ' P ' lies between the parallel lines x+2y=1 and 2x+4y=15 is

    Maths-General

    ((1+fraction numerator alpha over denominator square root of 2 end fraction)+2(2 plus fraction numerator alpha over denominator square root of 2 end fraction) -1).(2 left parenthesis 1 plus fraction numerator alpha over denominator square root of 2 end fraction right parenthesis plus 4 left parenthesis 2 plus fraction numerator alpha over denominator square root of 2 end fraction right parenthesis minus 15) < 0

    General
    maths-

    is any point in the interior of the quadrilateral formed by the pair of lines  and the two lines 2x+y-2=0 and 4x+5y=20 then the possible number of positions of the points ' P ' is

    is any point in the interior of the quadrilateral formed by the pair of lines  and the two lines 2x+y-2=0 and 4x+5y=20 then the possible number of positions of the points ' P ' is

    maths-General
    parallel
    General
    Maths-

    If the point P open parentheses a squared comma a close parentheses subscript minus,lies in the region corresponding to the acute angle between the lines 2y=x and 4y=x then - .....

    u ≡ x - 2y = 0 and v ≡ x - 4y = 0
    >>>    S(x, y) ≡ x² - 6xy + 8y² = 0
    >>>     ( a - 2 )( a - 4 ) < 0

    If the point P open parentheses a squared comma a close parentheses subscript minus,lies in the region corresponding to the acute angle between the lines 2y=x and 4y=x then - .....

    Maths-General

    u ≡ x - 2y = 0 and v ≡ x - 4y = 0
    >>>    S(x, y) ≡ x² - 6xy + 8y² = 0
    >>>     ( a - 2 )( a - 4 ) < 0

    General
    Maths-

    Consider A(0,1) and B(2,0) and P be a point on the line 4x+3y+9=0, co-ordinates of P such vertical line PA minus PB vertical line is maximum is

     Hence the point is (negative 18 over 59 over 5).

    Consider A(0,1) and B(2,0) and P be a point on the line 4x+3y+9=0, co-ordinates of P such vertical line PA minus PB vertical line is maximum is

    Maths-General

     Hence the point is (negative 18 over 59 over 5).

    General
    Maths-

    Assertion (A): The lines represented by 3 x squared plus 10 x y plus 3 y squared minus 16 x minus 16 y plus 16 equals 0 and x+ y=2 do not form a triangle
    Reason (R): The above three lines concur at (1,1)

    Both Assertion and Reason are correct and the Reason is the correct explanation of Assertion.

    Assertion (A): The lines represented by 3 x squared plus 10 x y plus 3 y squared minus 16 x minus 16 y plus 16 equals 0 and x+ y=2 do not form a triangle
    Reason (R): The above three lines concur at (1,1)

    Maths-General

    Both Assertion and Reason are correct and the Reason is the correct explanation of Assertion.

    parallel
    General
    chemistry-

    In Bohr’s hydrogen atom, the electronic transition emitting light of longest wavelength is:

    In Bohr’s hydrogen atom, the electronic transition emitting light of longest wavelength is:

    chemistry-General
    General
    Maths-

    P1,P2,P3, be the product of perpendiculars from (0,0) to  x y plus x plus y plus 1 equals 0 comma x squared minus y squared plus 2 x plus 1 equals 0 comma 2 x squared plus 3 x y minus 2 y squared plus 3 x plus y plus 1 equals 0  respectively then:

    P1 = 1;
    P2 = 1 half;
    P3 = fraction numerator 1 over denominator square root of 7 end fraction;
    >>> Therefore, we can say that P1>P2>P3.

    P1,P2,P3, be the product of perpendiculars from (0,0) to  x y plus x plus y plus 1 equals 0 comma x squared minus y squared plus 2 x plus 1 equals 0 comma 2 x squared plus 3 x y minus 2 y squared plus 3 x plus y plus 1 equals 0  respectively then:

    Maths-General

    P1 = 1;
    P2 = 1 half;
    P3 = fraction numerator 1 over denominator square root of 7 end fraction;
    >>> Therefore, we can say that P1>P2>P3.

    General
    Maths-

    If θ is angle between pair of lines x squared minus 3 x y plus lambda y squared plus 3 x minus 5 y plus 2 equals 0, then cosec squared invisible function application theta equals

    >>> lambda = 2.
    >>> tantheta = 1 third
    >>> cos e c squared theta = 10.

    If θ is angle between pair of lines x squared minus 3 x y plus lambda y squared plus 3 x minus 5 y plus 2 equals 0, then cosec squared invisible function application theta equals

    Maths-General

    >>> lambda = 2.
    >>> tantheta = 1 third
    >>> cos e c squared theta = 10.

    parallel
    General
    Maths-

    If the pair of lines a x squared plus 2 h x y plus b y squared plus 2 g x plus 2 f y plus c equals 0 intersect on the x-axis, then 2fgh=

    2fgh=bg2+ch2
     

    If the pair of lines a x squared plus 2 h x y plus b y squared plus 2 g x plus 2 f y plus c equals 0 intersect on the x-axis, then 2fgh=

    Maths-General

    2fgh=bg2+ch2
     

    General
    Maths-

    If the pair of lines a x squared plus 2 h x y plus b y squared plus 2 g x plus 2 f y plus c equals 0 intersect on the x-axis, then ac=

    g squared equals a c

    If the pair of lines a x squared plus 2 h x y plus b y squared plus 2 g x plus 2 f y plus c equals 0 intersect on the x-axis, then ac=

    Maths-General

    g squared equals a c

    General
    maths-

    If the equation x squared plus p y squared plus q y equals a squared represents a pair of perpendicular lines then its point of intersection is

    If the equation x squared plus p y squared plus q y equals a squared represents a pair of perpendicular lines then its point of intersection is

    maths-General
    parallel
    General
    Maths-

    If the lines x squared plus 2 x y minus 35 y squared minus 4 x plus 44 y minus 12 equals 0 and 5 x plus lambda y minus 8 equals 0 are concurrent then λ

    >>> The value of lambda is 2.

    If the lines x squared plus 2 x y minus 35 y squared minus 4 x plus 44 y minus 12 equals 0 and 5 x plus lambda y minus 8 equals 0 are concurrent then λ

    Maths-General

    >>> The value of lambda is 2.

    General
    Maths-

    The equation of the line concurrent with the pair of lines 3 x y minus 2 y squared minus 7 x plus y plus 3 equals 0 is

    Hence, x=y is the the line that is concurrent with the pair of straight lines.

    The equation of the line concurrent with the pair of lines 3 x y minus 2 y squared minus 7 x plus y plus 3 equals 0 is

    Maths-General

    Hence, x=y is the the line that is concurrent with the pair of straight lines.

    General
    Maths-

    If the equation lambda x squared minus 5 x y plus 6 y squared plus x minus 3 y equals 0 represents a pair of straight lines then their point of intersection is

    >>>The point of intersection of the pair of straight lines x2 – 5xy + 6y2 + x – 3y = 0 is (-3, -1)

    If the equation lambda x squared minus 5 x y plus 6 y squared plus x minus 3 y equals 0 represents a pair of straight lines then their point of intersection is

    Maths-General

    >>>The point of intersection of the pair of straight lines x2 – 5xy + 6y2 + x – 3y = 0 is (-3, -1)

    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.