Maths-
General
Easy

Question

Four dice are rolled then the number of possible out comes is

  1. 5 to the power of 4 end exponent    
  2. 6 to the power of 4 end exponent minus 5 to the power of 4 end exponent    
  3. 5 to the power of 4 end exponent minus 3 to the power of 4 end exponent    
  4. 6 to the power of 4 end exponent    

hintHint:

When two dice are rolled number of possible outcomes is 36 i.e. 6 squared

The correct answer is: 6 to the power of 4 end exponent


    When a die is rolled number of possible outcomes is selecting an event from 6 events = C presuperscript 6 subscript 1
    When four dice are rolled number of possible outcomes = C presuperscript 6 subscript 1x C presuperscript 6 subscript 1C presuperscript 6 subscript 1C presuperscript 6 subscript 1 = 6 to the power of 4
     Thus, four dice are rolled then the number of possible out comes is 6 to the power of 4.

    Related Questions to study

    General
    Maths-

    The number of ways in which 5 different coloured flowers be strung in the form of a garland is :

    The number of ways in which 5 different coloured flowers be strung in the form of a garland is :

    Maths-General
    General
    Maths-

    Number of ways to rearrange the letters of the word CHEESE is

    Number of ways to rearrange the letters of the word CHEESE is

    Maths-General
    General
    Maths-

    The number of ways in which 17 billiard balls be arranged in a row if 7 of them are black, 6 are red, 4 are white is

    We cannot arrange the billiards balls as follows:
    There are 17 balls, so the total number of arrangements = 17!
    This is incorrect because this method is applicable only when the balls are distinct, not identical. But, in our case, all the balls of the same color are identical.

    The number of ways in which 17 billiard balls be arranged in a row if 7 of them are black, 6 are red, 4 are white is

    Maths-General

    We cannot arrange the billiards balls as follows:
    There are 17 balls, so the total number of arrangements = 17!
    This is incorrect because this method is applicable only when the balls are distinct, not identical. But, in our case, all the balls of the same color are identical.

    parallel
    General
    Maths-

    Number of permutations that can be made using all the letters of the word MATRIX is

    Number of permutations that can be made using all the letters of the word MATRIX is

    Maths-General
    General
    Maths-

    The number of different signals that can be made by 5 flags from 8 flags of different colours is :

    Each of the different arrangements which can be made by taking some or all of a number of things at a time is called permutation. 
    space T h e space n u m b e r space o f space p e r m u t a t i o n space w i t h o u t space a n y space r e p e t i t i o n space s t a t e s space t h a t space a r r a n g i n g space n space space o b j e c t s space t a k e n space r space space a t space a space t i m e space i s space e q u i v a l e n t space t o space f i l l i n g space r space space p l a c e s space o u t space o f space n space space t h i n g s space
equals space n left parenthesis n minus 1 right parenthesis left parenthesis n minus 2 right parenthesis... left parenthesis n minus top enclose r minus 1 end enclose right parenthesis space space space w a y s

equals fraction numerator n factorial over denominator left parenthesis n minus r right parenthesis factorial end fraction space equals space scriptbase P subscript r end scriptbase presuperscript n


    W e space c a n space a l s o space s a y space t h a t comma space space scriptbase P subscript r end scriptbase presuperscript n equals space n left parenthesis n minus 1 right parenthesis left parenthesis n minus 2 right parenthesis... left parenthesis n minus r plus 1 right parenthesis space space comma space t h u s comma

scriptbase P subscript 5 end scriptbase presuperscript 8 equals space 8 cross times 7 cross times 6 cross times 5 cross times 4 space equals space 6720 space.

    Thus we can say that the permutation concerns both the selection and the arrangement of the selected things in all possible ways.

    The number of different signals that can be made by 5 flags from 8 flags of different colours is :

    Maths-General

    Each of the different arrangements which can be made by taking some or all of a number of things at a time is called permutation. 
    space T h e space n u m b e r space o f space p e r m u t a t i o n space w i t h o u t space a n y space r e p e t i t i o n space s t a t e s space t h a t space a r r a n g i n g space n space space o b j e c t s space t a k e n space r space space a t space a space t i m e space i s space e q u i v a l e n t space t o space f i l l i n g space r space space p l a c e s space o u t space o f space n space space t h i n g s space
equals space n left parenthesis n minus 1 right parenthesis left parenthesis n minus 2 right parenthesis... left parenthesis n minus top enclose r minus 1 end enclose right parenthesis space space space w a y s

equals fraction numerator n factorial over denominator left parenthesis n minus r right parenthesis factorial end fraction space equals space scriptbase P subscript r end scriptbase presuperscript n


    W e space c a n space a l s o space s a y space t h a t comma space space scriptbase P subscript r end scriptbase presuperscript n equals space n left parenthesis n minus 1 right parenthesis left parenthesis n minus 2 right parenthesis... left parenthesis n minus r plus 1 right parenthesis space space comma space t h u s comma

scriptbase P subscript 5 end scriptbase presuperscript 8 equals space 8 cross times 7 cross times 6 cross times 5 cross times 4 space equals space 6720 space.

    Thus we can say that the permutation concerns both the selection and the arrangement of the selected things in all possible ways.

    General
    Maths-

    If fraction numerator x to the power of 2 end exponent plus x plus 1 over denominator x to the power of 2 end exponent plus 2 x plus 1 end fraction equals A plus fraction numerator B over denominator x plus 1 end fraction plus fraction numerator C over denominator left parenthesis x plus 1 right parenthesis to the power of 2 end exponent end fraction then A-B=

    If fraction numerator x to the power of 2 end exponent plus x plus 1 over denominator x to the power of 2 end exponent plus 2 x plus 1 end fraction equals A plus fraction numerator B over denominator x plus 1 end fraction plus fraction numerator C over denominator left parenthesis x plus 1 right parenthesis to the power of 2 end exponent end fraction then A-B=

    Maths-General
    parallel
    General
    Maths-

    fraction numerator x plus 1 over denominator left parenthesis 2 x minus 1 right parenthesis left parenthesis 3 x plus 1 right parenthesis end fraction equals fraction numerator A over denominator 2 x minus 1 end fraction plus fraction numerator B over denominator 3 x plus 1 end fraction, then 16 A plus 9 B equals

    fraction numerator x plus 1 over denominator left parenthesis 2 x minus 1 right parenthesis left parenthesis 3 x plus 1 right parenthesis end fraction equals fraction numerator A over denominator 2 x minus 1 end fraction plus fraction numerator B over denominator 3 x plus 1 end fraction, then 16 A plus 9 B equals

    Maths-General
    General
    Maths-

    If fraction numerator x to the power of 2 end exponent minus 10 x plus 13 over denominator left parenthesis x minus 1 right parenthesis open parentheses x to the power of 2 end exponent minus 5 x plus 6 close parentheses end fraction equals fraction numerator A over denominator x minus 1 end fraction plus fraction numerator B over denominator x minus 2 end fraction plus fraction numerator K over denominator x minus 3 end fraction then K=

    If fraction numerator x to the power of 2 end exponent minus 10 x plus 13 over denominator left parenthesis x minus 1 right parenthesis open parentheses x to the power of 2 end exponent minus 5 x plus 6 close parentheses end fraction equals fraction numerator A over denominator x minus 1 end fraction plus fraction numerator B over denominator x minus 2 end fraction plus fraction numerator K over denominator x minus 3 end fraction then K=

    Maths-General
    General
    Maths-

    If the remainders of the polynomial f left parenthesis x right parenthesis when divided by x plus 1 and x minus 1 are 7,3 then the remainder of f left parenthesis x right parenthesis when devided by x to the power of 2 end exponent minus 1 is

    If the remainders of the polynomial f left parenthesis x right parenthesis when divided by x plus 1 and x minus 1 are 7,3 then the remainder of f left parenthesis x right parenthesis when devided by x to the power of 2 end exponent minus 1 is

    Maths-General
    parallel
    General
    Maths-

    If fraction numerator 1 over denominator left parenthesis a x plus b right parenthesis left parenthesis c x plus d right parenthesis end fraction equals fraction numerator A over denominator a x plus b end fraction plus fraction numerator B over denominator c x plus d end fraction then fraction numerator 1 over denominator left parenthesis a x plus b right parenthesis to the power of 2 end exponent left parenthesis c x plus d right parenthesis end fraction equals

    If fraction numerator 1 over denominator left parenthesis a x plus b right parenthesis left parenthesis c x plus d right parenthesis end fraction equals fraction numerator A over denominator a x plus b end fraction plus fraction numerator B over denominator c x plus d end fraction then fraction numerator 1 over denominator left parenthesis a x plus b right parenthesis to the power of 2 end exponent left parenthesis c x plus d right parenthesis end fraction equals

    Maths-General
    General
    Maths-

    The partial fractions of fraction numerator left parenthesis x plus 1 right parenthesis to the power of 2 end exponent over denominator x open parentheses x to the power of 2 end exponent plus 1 close parentheses end fraction are

    The partial fractions of fraction numerator left parenthesis x plus 1 right parenthesis to the power of 2 end exponent over denominator x open parentheses x to the power of 2 end exponent plus 1 close parentheses end fraction are

    Maths-General
    General
    Maths-

    The partial fractions of fraction numerator 1 over denominator x to the power of 3 end exponent left parenthesis x plus 2 right parenthesis end fraction are

    The partial fractions of fraction numerator 1 over denominator x to the power of 3 end exponent left parenthesis x plus 2 right parenthesis end fraction are

    Maths-General
    parallel
    General
    Maths-

    fraction numerator 3 x to the power of 2 end exponent plus x plus 1 over denominator left parenthesis x minus 1 right parenthesis to the power of 4 end exponent end fraction equals fraction numerator A over denominator x minus 1 end fraction plus fraction numerator B over denominator left parenthesis x minus 1 right parenthesis to the power of 2 end exponent end fraction plus fraction numerator C over denominator left parenthesis x minus 1 right parenthesis to the power of 3 end exponent end fraction plus fraction numerator D over denominator left parenthesis x minus 1 right parenthesis to the power of 4 end exponent end fraction then A plus B minus C plus D equals

    fraction numerator 3 x to the power of 2 end exponent plus x plus 1 over denominator left parenthesis x minus 1 right parenthesis to the power of 4 end exponent end fraction equals fraction numerator A over denominator x minus 1 end fraction plus fraction numerator B over denominator left parenthesis x minus 1 right parenthesis to the power of 2 end exponent end fraction plus fraction numerator C over denominator left parenthesis x minus 1 right parenthesis to the power of 3 end exponent end fraction plus fraction numerator D over denominator left parenthesis x minus 1 right parenthesis to the power of 4 end exponent end fraction then A plus B minus C plus D equals

    Maths-General
    General
    Maths-

    The partial fractions of fraction numerator x to the power of 2 end exponent over denominator open parentheses x to the power of 2 end exponent plus a to the power of 2 end exponent close parentheses open parentheses x to the power of 2 end exponent plus b to the power of 2 end exponent close parentheses end fraction are

    The partial fractions of fraction numerator x to the power of 2 end exponent over denominator open parentheses x to the power of 2 end exponent plus a to the power of 2 end exponent close parentheses open parentheses x to the power of 2 end exponent plus b to the power of 2 end exponent close parentheses end fraction are

    Maths-General
    General
    Maths-

    The partial fractions of fraction numerator 6 x to the power of 4 end exponent plus 5 x to the power of 3 end exponent plus x to the power of 2 end exponent plus 5 x plus 2 over denominator 1 plus 5 x plus 6 x to the power of 2 end exponent end fraction are

    The partial fractions of fraction numerator 6 x to the power of 4 end exponent plus 5 x to the power of 3 end exponent plus x to the power of 2 end exponent plus 5 x plus 2 over denominator 1 plus 5 x plus 6 x to the power of 2 end exponent end fraction are

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.