Maths-
General
Easy

Question

The partial fractions of fraction numerator 1 over denominator x to the power of 3 end exponent left parenthesis x plus 2 right parenthesis end fraction are

  1. fraction numerator 1 over denominator 8 x end fraction minus fraction numerator 1 over denominator 4 x to the power of 2 end exponent end fraction plus fraction numerator 1 over denominator 2 x to the power of 3 end exponent end fraction minus fraction numerator 1 over denominator 8 left parenthesis x plus 2 right parenthesis end fraction    
  2. fraction numerator 1 over denominator 8 x end fraction plus fraction numerator 1 over denominator 4 x to the power of 2 end exponent end fraction plus fraction numerator 1 over denominator 2 x to the power of 3 end exponent end fraction minus fraction numerator 1 over denominator 8 left parenthesis x plus 2 right parenthesis end fraction    
  3. fraction numerator 1 over denominator 8 x end fraction minus fraction numerator 1 over denominator 4 x to the power of 2 end exponent end fraction minus fraction numerator 1 over denominator 2 x to the power of 3 end exponent end fraction plus fraction numerator 1 over denominator 8 left parenthesis x plus 2 right parenthesis end fraction    
  4. fraction numerator 1 over denominator 8 x end fraction plus fraction numerator 1 over denominator 4 x to the power of 2 end exponent end fraction plus fraction numerator 1 over denominator 2 x to the power of 3 end exponent end fraction plus fraction numerator 1 over denominator 8 left parenthesis x plus 2 right parenthesis end fraction    

hintHint:

The partial fraction decomposition is writing a rational expression as the sum of two or more partial fractions. The following steps are helpful to understand the process to decompose a fraction into partial fractions.
  • Step-1: Factorize the numerator and denominator and simplify the rational expression, before doing partial fraction decomposition.
  • Step-2: Split the rational expression as per the formula for partial fractions. P/((ax + b)2 = [A/(ax + b)] + [B/(ax + b)2]. There are different partial fractions formulas based on the numerator and denominator expression.
  • Step-3: Take the LCM of the factors of the denominators of the partial fractions, and multiply both sides of the equation with this LCM.
  • Step-4: Simplify and obtain the values of A and B by comparing coefficients of like terms on both sides.
  • Step-5: Substitute the values of the constants A and B on the right side of the equation to obtain the partial fraction.

The correct answer is: fraction numerator 1 over denominator 8 x end fraction minus fraction numerator 1 over denominator 4 x to the power of 2 end exponent end fraction plus fraction numerator 1 over denominator 2 x to the power of 3 end exponent end fraction minus fraction numerator 1 over denominator 8 left parenthesis x plus 2 right parenthesis end fraction


     Given : fraction numerator 1 over denominator x to the power of 3 end exponent left parenthesis x plus 2 right parenthesis end fraction
    Step-1: Split the rational expression as per the formula for partial fractions.
     rightwards double arrow fraction numerator 1 over denominator x cubed left parenthesis x plus 2 right parenthesis end fraction space equals space A over x space plus space B over x squared space plus space C over x cubed space plus space fraction numerator D over denominator left parenthesis x space plus space 2 right parenthesis end fraction
    Step-2: Take the LCM of the factors of the denominators of the partial fractions, and multiply both sides of the equation with this LCM.
    .rightwards double arrow fraction numerator 1 over denominator x cubed left parenthesis x plus 2 right parenthesis end fraction space equals space fraction numerator A left parenthesis x squared right parenthesis left parenthesis x space plus 2 right parenthesis space plus space B left parenthesis x right parenthesis left parenthesis x space plus 2 right parenthesis space plus space C left parenthesis x plus 2 right parenthesis space plus space D left parenthesis x cubed right parenthesis over denominator x cubed left parenthesis x plus 2 right parenthesis end fraction

C a n c e l l i n g space t h e space d e n o m i n a t o r s space o n space b o t h space s i d e s

rightwards double arrow 1 space equals space A left parenthesis x squared right parenthesis left parenthesis x space plus 2 right parenthesis space plus space B left parenthesis x right parenthesis left parenthesis x space plus 2 right parenthesis space plus space C left parenthesis x plus 2 right parenthesis space plus space D left parenthesis x cubed right parenthesis

    Step-3: Simplify and obtain the values of A , B , C and D by comparing coefficients of like terms on both sides
    rightwards double arrow 1 space equals space A left parenthesis x cubed space plus 2 x squared right parenthesis space plus space B left parenthesis x squared space plus 2 x right parenthesis space plus space C left parenthesis x plus 2 right parenthesis space plus space D left parenthesis x cubed right parenthesis
rightwards double arrow 1 space equals x cubed left parenthesis A space plus D right parenthesis space plus x squared left parenthesis B space plus 2 A right parenthesis space plus space x left parenthesis 2 B space plus C right parenthesis space plus space 2 C
C o m p a r i n g space a n d space e q u a t i n g
rightwards double arrow A space plus space D space equals space 0
rightwards double arrow B space plus space 2 A space equals space 0
rightwards double arrow 2 B space plus space C space equals space 0
rightwards double arrow 2 C space equals space 1 space rightwards double arrow C space equals 1 half
S u b s t i t u t i n g space t h e space v a l u e space o f space C
rightwards double arrow B space equals space minus 1 fourth space comma space A space equals space 1 over 8 space a n d space D space equals space minus 1 over 8

    Step-4: Substitute the values of the constants A, B , C and D on the right side of the equation to obtain the partial fraction.

    rightwards double arrow fraction numerator 1 over denominator x cubed left parenthesis x plus 2 right parenthesis end fraction space equals space A over x space plus space B over x squared space plus space C over x cubed space plus space fraction numerator D over denominator left parenthesis x space plus space 2 right parenthesis end fraction
    rightwards double arrow fraction numerator 1 over denominator x cubed left parenthesis x plus 2 right parenthesis end fraction space equals space fraction numerator 1 over denominator 8 x end fraction space minus space fraction numerator 1 over denominator 4 x squared end fraction space plus space 2 1 over x cubed space minus space fraction numerator 1 over denominator 8 left parenthesis x space plus space 2 right parenthesis end fraction

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.