Question
If (0,0), (a, 2), (2, b) form the vertices of an equilateral triangle, where a and b not lie between 0 and 2, then the value of 4(ab)‐ab equals
- 4
- -4
- 2
- 8
The correct answer is: 4
, where is equilateral.
and
if
Let
Similarly also
Related Questions to study
The lines and are concurrent if
The lines and are concurrent if
Equation of the line perpendicular to 4x + 7y + 9 = 0 and such that the triangle formed by it with the coordinates axes forms an area of 3.5 sq. units is
Equation of the line perpendicular to 4x + 7y + 9 = 0 and such that the triangle formed by it with the coordinates axes forms an area of 3.5 sq. units is
(0, 0) is the foot of the perpendicular from (4, 2) on a straight line. The equation of the line is
(0, 0) is the foot of the perpendicular from (4, 2) on a straight line. The equation of the line is
The orthocentre of the triangle having vertices at (2, 3) (2, 5) (4, 3) is
The orthocentre of the triangle having vertices at (2, 3) (2, 5) (4, 3) is
Each side of square is length 5. The centre of square is (3, 7) and one of the diagonals is parallel to y = x. Then the coordinates of its vertices are
Therefore, the coordinates of vertices of square are (1, 5) (1, 9) (5, 9) (5, 5).
Each side of square is length 5. The centre of square is (3, 7) and one of the diagonals is parallel to y = x. Then the coordinates of its vertices are
Therefore, the coordinates of vertices of square are (1, 5) (1, 9) (5, 9) (5, 5).
The sides of a rhombus ABCD are parallel to the lines y = x + 2; y = 7x + 3. If the diagonals of the rhombus intersect at the point (1, 2) and the vertex A is on y – axis then A =
The sides of a rhombus ABCD are parallel to the lines y = x + 2; y = 7x + 3. If the diagonals of the rhombus intersect at the point (1, 2) and the vertex A is on y – axis then A =
The quadrilateral formed by the lines + y = 0; x + y = 0; x + y = 1; x + y + 1 = 0 is
The quadrilateral formed by the lines + y = 0; x + y = 0; x + y = 1; x + y + 1 = 0 is
If 7x – y + 3 = 0; x + y – 3 = 0 are tow sides of an isosceles triangle and the third side passes through (1, 0) then the equation of the third side is
So here we used the concept of the triangles, and the equations of the lines to solve this problem. We know that the equation of a straight line in slope-intercept form is given as y = mx+c, so we used that here. So the equation of the third side is x + 3y - 1 = 0.
If 7x – y + 3 = 0; x + y – 3 = 0 are tow sides of an isosceles triangle and the third side passes through (1, 0) then the equation of the third side is
So here we used the concept of the triangles, and the equations of the lines to solve this problem. We know that the equation of a straight line in slope-intercept form is given as y = mx+c, so we used that here. So the equation of the third side is x + 3y - 1 = 0.