Maths-
General
Easy

Question

If c o s e c to the power of 6 end exponent invisible function application q minus c o t to the power of 6 end exponent invisible function application q equals a c o t to the power of 4 end exponent invisible function application q plus b c o t to the power of 2 end exponent invisible function application q plus c then a+b+c=

  1. 0    
  2. 7    
  3. 6    
  4. 1    

hintHint:

Trigonometry formulas can be used to address many different kinds of issues. These issues could involve Pythagorean identities, product identities, trigonometric ratios (sin, cos, tan, sec, cosec, and cot), etc. We have given c o s e c to the power of 6 end exponent invisible function application q minus c o t to the power of 6 end exponent invisible function application q equals a c o t to the power of 4 end exponent invisible function application q plus b c o t to the power of 2 end exponent invisible function application q plus c, we have to find a+b+c.

The correct answer is: 7


    A branch of mathematics called trigonometry deals with triangles. The study of relationships between triangle lengths and angles is known as trigonometry.
    The applications of trigonometry and its formulas are countless. For instance, the triangulation method is used in satellite navigation systems, astronomy, and geography to calculate the distances between landmarks and neighbouring stars.
    In the mathematical field of algebra, letters are used in place of numbers. An algebraic equation represents a scale; anything done with a number on one side of the scale likewise applies to either side of the scale. The figures are fixed. Real numbers, complex numbers, matrices, vectors, and many more concepts are all part of algebra. The most typical letters used to express algebraic equations and problems are X, Y, A, and B.
    Here we will use the formula:
    a3 – b3 = (a – b)(a2 + ab + b2)
    So, using this formulas, we get:
    cosec6θcot6θ (cosec2θcot2θ)(cosec4θ cosec2θ.cot2θ cot4θ)
    cosec6θcot6θ (cosec4θ cosec2θ.cot2θ cot4θ)
    Now we know the formula: cosec2θcot2θ 1
    Using this, we get:
    cosec4θ+cosec2θ.cot2θ+cot4θ=cosec2θ(cosec2θ+cot2θ)+cot4θ=(1+cot2θ)(1+2cot2θ)+cot4θ
    =1+3cot2θ+3cot4θ
    So, here we have a, b and c, we get:
    a+b+c = 1 + 3 + 3
    a+b+c = 7

    So here we have used the trigonometric functions and trigonometric formulas to solve this, the algebraic expressions were used to formulate it. Here the answer of a+b+c is 7.

    Related Questions to study

    General
    Maths-

    If a,b,c are the sides of the triangle ABC such that open parentheses 1 plus fraction numerator b minus c over denominator a end fraction close parentheses to the power of a end exponent open parentheses 1 plus fraction numerator c minus a over denominator b end fraction close parentheses to the power of b end exponent open parentheses 1 plus fraction numerator a minus b over denominator c end fraction close parentheses to the power of c end exponent greater or equal than 1
    Then the triangle A B C must be

    If a,b,c are the sides of the triangle ABC such that open parentheses 1 plus fraction numerator b minus c over denominator a end fraction close parentheses to the power of a end exponent open parentheses 1 plus fraction numerator c minus a over denominator b end fraction close parentheses to the power of b end exponent open parentheses 1 plus fraction numerator a minus b over denominator c end fraction close parentheses to the power of c end exponent greater or equal than 1
    Then the triangle A B C must be

    Maths-General
    General
    Maths-

    If s i n invisible function application y equals x s i n invisible function application left parenthesis a plus y right parenthesis and fraction numerator d y over denominator d x end fraction equals fraction numerator A over denominator 1 plus x to the power of 2 end exponent minus 2 x c o s invisible function application a end fraction then the value of blank to the power of ´ end exponent A ' is

    Therefore the correct option is choice 3

    If s i n invisible function application y equals x s i n invisible function application left parenthesis a plus y right parenthesis and fraction numerator d y over denominator d x end fraction equals fraction numerator A over denominator 1 plus x to the power of 2 end exponent minus 2 x c o s invisible function application a end fraction then the value of blank to the power of ´ end exponent A ' is

    Maths-General

    Therefore the correct option is choice 3

    General
    Maths-

    The maximum value of open parentheses c o s invisible function application alpha subscript 1 end subscript close parentheses open parentheses c o s invisible function application alpha subscript 2 end subscript close parentheses horizontal ellipsis horizontal ellipsis. open parentheses c o s invisible function application alpha subscript n end subscript close parentheses under the restriction
    0 less or equal than alpha subscript 1 end subscript comma alpha subscript 2 end subscript horizontal ellipsis horizontal ellipsis horizontal ellipsis subscript n end subscript less or equal than fraction numerator pi over denominator 2 end fraction & c o t invisible function application alpha subscript 1 end subscript times c o t invisible function application alpha subscript 2 end subscript horizontal ellipsis horizontal ellipsis c o t invisible function application alpha subscript n end subscript equals 1 is

    The maximum value of open parentheses c o s invisible function application alpha subscript 1 end subscript close parentheses open parentheses c o s invisible function application alpha subscript 2 end subscript close parentheses horizontal ellipsis horizontal ellipsis. open parentheses c o s invisible function application alpha subscript n end subscript close parentheses under the restriction
    0 less or equal than alpha subscript 1 end subscript comma alpha subscript 2 end subscript horizontal ellipsis horizontal ellipsis horizontal ellipsis subscript n end subscript less or equal than fraction numerator pi over denominator 2 end fraction & c o t invisible function application alpha subscript 1 end subscript times c o t invisible function application alpha subscript 2 end subscript horizontal ellipsis horizontal ellipsis c o t invisible function application alpha subscript n end subscript equals 1 is

    Maths-General
    parallel
    General
    Maths-

    The mean of five observations is 4 and their variance is 5.2. If three of these observations are 1, 2, and 6. Then the other two are

    The mean of five observations is 4 and their variance is 5.2. If three of these observations are 1, 2, and 6. Then the other two are

    Maths-General
    General
    Maths-

    text If  end text x subscript 1 end subscript comma x subscript 2 end subscript comma x subscript 3 end subscript are three non zero real numbers such that open parentheses x subscript 1 end subscript superscript 2 end superscript plus x subscript 2 end subscript superscript 2 end superscript close parentheses open parentheses x subscript 2 end subscript superscript 2 end superscript plus x subscript 3 end subscript superscript 2 end superscript close parentheses less or equal than open parentheses x subscript 1 end subscript x subscript 2 end subscript plus x subscript 2 end subscript x subscript 3 end subscript close parentheses to the power of 2 end exponent blank text then the G.M. of  end text x subscript 1 end subscript comma x subscript 2 end subscript comma x subscript 3 end subscript text  is end text

    text If  end text x subscript 1 end subscript comma x subscript 2 end subscript comma x subscript 3 end subscript are three non zero real numbers such that open parentheses x subscript 1 end subscript superscript 2 end superscript plus x subscript 2 end subscript superscript 2 end superscript close parentheses open parentheses x subscript 2 end subscript superscript 2 end superscript plus x subscript 3 end subscript superscript 2 end superscript close parentheses less or equal than open parentheses x subscript 1 end subscript x subscript 2 end subscript plus x subscript 2 end subscript x subscript 3 end subscript close parentheses to the power of 2 end exponent blank text then the G.M. of  end text x subscript 1 end subscript comma x subscript 2 end subscript comma x subscript 3 end subscript text  is end text

    Maths-General
    General
    Maths-

    When 10 is subtracted from all the observations, the mean is reduced to 60% of its value. If 5 is added to all the observations, then the mean will be

    Hence, the new mean is 30.

    When 10 is subtracted from all the observations, the mean is reduced to 60% of its value. If 5 is added to all the observations, then the mean will be

    Maths-General

    Hence, the new mean is 30.

    parallel
    General
    Maths-

    If mean deviation through median is 15 and median is 450, then coefficient of mean deviation is

    Hence, the coefficient of Mean Deviation is 1/30.

    If mean deviation through median is 15 and median is 450, then coefficient of mean deviation is

    Maths-General

    Hence, the coefficient of Mean Deviation is 1/30.

    General
    Maths-

    The standard deviation of the data given by Variate (x) 0 1 2 3. . . . . n Frequency (f) blank to the power of n end exponent C subscript 0 end subscript blank to the power of n end exponent C subscript 1 end subscript blank to the power of n end exponent C subscript 2 end subscript blank to the power of n end exponent C subscript 3 end subscript midline horizontal ellipsis times blank to the power of n end exponent C subscript n end subscript

    The standard deviation of the data given by Variate (x) 0 1 2 3. . . . . n Frequency (f) blank to the power of n end exponent C subscript 0 end subscript blank to the power of n end exponent C subscript 1 end subscript blank to the power of n end exponent C subscript 2 end subscript blank to the power of n end exponent C subscript 3 end subscript midline horizontal ellipsis times blank to the power of n end exponent C subscript n end subscript

    Maths-General
    General
    Maths-

    If the standard deviation of 0,1,2,3…..9 is K, then the standard deviation of 10,11,12,13…. 19 is

    If the standard deviation of 0,1,2,3…..9 is K, then the standard deviation of 10,11,12,13…. 19 is

    Maths-General
    parallel
    General
    Maths-

    When 15 was subtracted from each of the seven observations the following number resulted : -3,0,-2,4,6,1,1. The mean of the distribution is

    When 15 was subtracted from each of the seven observations the following number resulted : -3,0,-2,4,6,1,1. The mean of the distribution is

    Maths-General
    General
    Maths-

    The standard deviation of a variable x is sigma . The standard deviation of the variable fraction numerator a x plus b over denominator c end fraction where a, b, c are constants is ...

    The standard deviation of a variable x is sigma . The standard deviation of the variable fraction numerator a x plus b over denominator c end fraction where a, b, c are constants is ...

    Maths-General
    General
    Maths-

    If text end text n element of N text  and  end text 0 less or equal than theta less than pi text end textthen the value of stretchy integral subscript 0 end subscript superscript n pi plus theta end superscript   vertical line s i n invisible function application x vertical linedx is equal to

    If text end text n element of N text  and  end text 0 less or equal than theta less than pi text end textthen the value of stretchy integral subscript 0 end subscript superscript n pi plus theta end superscript   vertical line s i n invisible function application x vertical linedx is equal to

    Maths-General
    parallel
    General
    Maths-

    If I equals integral x square root of fraction numerator x to the power of 2 end exponent plus 1 over denominator x to the power of 2 end exponent minus 1 end fraction end root d x comma text end textthen I equals

    If I equals integral x square root of fraction numerator x to the power of 2 end exponent plus 1 over denominator x to the power of 2 end exponent minus 1 end fraction end root d x comma text end textthen I equals

    Maths-General
    General
    Maths-

    stretchy integral subscript 0 end subscript superscript pi divided by 2 end superscript   fraction numerator s i n to the power of 2 end exponent invisible function application 9 x over denominator sin invisible function application x end fraction d x equals

    stretchy integral subscript 0 end subscript superscript pi divided by 2 end superscript   fraction numerator s i n to the power of 2 end exponent invisible function application 9 x over denominator sin invisible function application x end fraction d x equals

    Maths-General
    General
    Maths-

    A square ABCD is inscribed in a circle of radius 4. A point P moves inside the circle such that d left parenthesis P comma A B right parenthesis less or equal than min(d(P,BC),d(P,DA)) where d(P,AB) is the distance of a point P from line AB. The area of region covered by the moving point P is (sq units)

    A square ABCD is inscribed in a circle of radius 4. A point P moves inside the circle such that d left parenthesis P comma A B right parenthesis less or equal than min(d(P,BC),d(P,DA)) where d(P,AB) is the distance of a point P from line AB. The area of region covered by the moving point P is (sq units)

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.