Maths-
General
Easy

Question

If integral s e c to the power of fraction numerator 4 over denominator 9 end fraction end exponent invisible function application x times c o s invisible function application e to the power of fraction numerator 14 over denominator 9 end fraction end exponent x d x equals a t a n to the power of b end exponent invisible function application x plus c then a+b= ___

  1. fraction numerator 106 over denominator 45 end fraction    
  2. fraction numerator 45 over denominator 106 end fraction    
  3. negative fraction numerator 106 over denominator 45 end fraction    
  4. negative fraction numerator 9 over denominator 5 end fraction    

The correct answer is: negative fraction numerator 106 over denominator 45 end fraction


    integral fraction numerator s e c to the power of 2 end exponent invisible function application x d x over denominator left parenthesis t a n invisible function application x right parenthesis to the power of fraction numerator 14 over denominator 9 end fraction end exponent end fraction equals negative fraction numerator 9 over denominator 5 end fraction left parenthesis t a n invisible function application x right parenthesis to the power of negative fraction numerator 5 over denominator 9 end fraction end exponent plus c

    Related Questions to study

    General
    Maths-

    The value of constant a>0 such that stretchy integral subscript 0 end subscript superscript a end superscript   open square brackets tan to the power of negative 1 end exponent invisible function application square root of x close square brackets d x equals stretchy integral subscript 0 end subscript superscript a end superscript   open square brackets cot to the power of negative 1 end exponent invisible function application square root of x close square brackets d x where [.] denotes G.I.F is

    The value of constant a>0 such that stretchy integral subscript 0 end subscript superscript a end superscript   open square brackets tan to the power of negative 1 end exponent invisible function application square root of x close square brackets d x equals stretchy integral subscript 0 end subscript superscript a end superscript   open square brackets cot to the power of negative 1 end exponent invisible function application square root of x close square brackets d x where [.] denotes G.I.F is

    Maths-General
    General
    Maths-

    Let text end text f colon R to the power of plus end exponent rightwards arrow R be a differentiable function with f left parenthesis A right parenthesis equals 3 and satisfying stretchy integral subscript 1 end subscript superscript x y end superscript   f left parenthesis t right parenthesis d t equals y stretchy integral subscript 1 end subscript superscript x end superscript   f left parenthesis t right parenthesis d t plus x stretchy integral subscript 1 end subscript superscript y end superscript   f left parenthesis t right parenthesis d t for all x comma y element of R to the power of plus end exponent comma text then  end text f left parenthesis x right parenthesis equals

    Let text end text f colon R to the power of plus end exponent rightwards arrow R be a differentiable function with f left parenthesis A right parenthesis equals 3 and satisfying stretchy integral subscript 1 end subscript superscript x y end superscript   f left parenthesis t right parenthesis d t equals y stretchy integral subscript 1 end subscript superscript x end superscript   f left parenthesis t right parenthesis d t plus x stretchy integral subscript 1 end subscript superscript y end superscript   f left parenthesis t right parenthesis d t for all x comma y element of R to the power of plus end exponent comma text then  end text f left parenthesis x right parenthesis equals

    Maths-General
    General
    Maths-

    Area bounded by the curve y to the power of 2 end exponent equals x plus 4 and the line x+2y=4 is _____ sq. units

    Area bounded by the curve y to the power of 2 end exponent equals x plus 4 and the line x+2y=4 is _____ sq. units

    Maths-General
    parallel
    General
    Maths-

    Area of the figure contained between the parabola x to the power of 2 end exponent equals 4 y and the curve y equals fraction numerator 8 over denominator x to the power of 2 end exponent plus 4 end fraction text  is  end text 2 pi minus K then K=

    Area of the figure contained between the parabola x to the power of 2 end exponent equals 4 y and the curve y equals fraction numerator 8 over denominator x to the power of 2 end exponent plus 4 end fraction text  is  end text 2 pi minus K then K=

    Maths-General
    General
    Maths-

    The area bounded by mini left parenthesis vertical line x vertical line comma vertical line y vertical line right parenthesis equals 2 text end text and m a x left parenthesis vertical line x vertical line comma vertical line y vertical line right parenthesis equals 4 text  is : end text

    The area bounded by mini left parenthesis vertical line x vertical line comma vertical line y vertical line right parenthesis equals 2 text end text and m a x left parenthesis vertical line x vertical line comma vertical line y vertical line right parenthesis equals 4 text  is : end text

    Maths-General
    General
    Maths-

    f left parenthesis x right parenthesis equals stretchy integral subscript 1 end subscript superscript x end superscript   fraction numerator tan to the power of negative 1 end exponent invisible function application t over denominator t end fraction d t semicolon x greater than 0 then the value of f open parentheses e to the power of 2 end exponent close parentheses minus f open parentheses fraction numerator 1 over denominator e to the power of 2 end exponent end fraction close parentheses text  is end text

    f left parenthesis x right parenthesis equals stretchy integral subscript 1 end subscript superscript x end superscript   fraction numerator tan to the power of negative 1 end exponent invisible function application t over denominator t end fraction d t semicolon x greater than 0 then the value of f open parentheses e to the power of 2 end exponent close parentheses minus f open parentheses fraction numerator 1 over denominator e to the power of 2 end exponent end fraction close parentheses text  is end text

    Maths-General
    parallel
    General
    Maths-

    integral left parenthesis square root of c o t invisible function application x end root plus square root of t a n invisible function application x end root right parenthesis d x equals f left parenthesis x right parenthesis plus c text  thenf  end text left parenthesis x right parenthesis equals

    integral left parenthesis square root of c o t invisible function application x end root plus square root of t a n invisible function application x end root right parenthesis d x equals f left parenthesis x right parenthesis plus c text  thenf  end text left parenthesis x right parenthesis equals

    Maths-General
    General
    Maths-

    If text end text g left parenthesis x right parenthesis equals stretchy integral subscript 0 end subscript superscript x end superscript   left parenthesis vertical line s i n invisible function application t vertical line plus vertical line c o s invisible function application t vertical line right parenthesis d t text  then  end text g open parentheses x plus fraction numerator n pi over denominator 2 end fraction close parentheses is equal to where n element of N

    If text end text g left parenthesis x right parenthesis equals stretchy integral subscript 0 end subscript superscript x end superscript   left parenthesis vertical line s i n invisible function application t vertical line plus vertical line c o s invisible function application t vertical line right parenthesis d t text  then  end text g open parentheses x plus fraction numerator n pi over denominator 2 end fraction close parentheses is equal to where n element of N

    Maths-General
    General
    Maths-

    If the primitive of text end text s i n to the power of negative 3 divided by 2 end exponent invisible function application x s i n to the power of negative 1 divided by 2 end exponent invisible function application left parenthesis x plus theta right parenthesis text end text text is end text text end text minus 2 c o s e c invisible function application theta square root of f left parenthesis x right parenthesis end root plus C text end textthen

    If the primitive of text end text s i n to the power of negative 3 divided by 2 end exponent invisible function application x s i n to the power of negative 1 divided by 2 end exponent invisible function application left parenthesis x plus theta right parenthesis text end text text is end text text end text minus 2 c o s e c invisible function application theta square root of f left parenthesis x right parenthesis end root plus C text end textthen

    Maths-General
    parallel
    General
    Maths-

    integral fraction numerator square root of s i n to the power of 3 end exponent invisible function application 2 x end root over denominator sin to the power of 5 end exponent invisible function application x end fraction d x text  is end text

    integral fraction numerator square root of s i n to the power of 3 end exponent invisible function application 2 x end root over denominator sin to the power of 5 end exponent invisible function application x end fraction d x text  is end text

    Maths-General
    General
    Physics-

    Assertion : Two similar trains are moving along the equatorial line with the same speed but in opposite direction. They will exert equal pressure on the rails.
    Reason : In uniform circular motion of magnitude of acceleration remains constant but the direction continuously changed.

    Assertion : Two similar trains are moving along the equatorial line with the same speed but in opposite direction. They will exert equal pressure on the rails.
    Reason : In uniform circular motion of magnitude of acceleration remains constant but the direction continuously changed.

    Physics-General
    General
    Physics-

    Assertion : As the frictional force increases, the safe velocity limit for taking a turn on an unbanked road also increases.
    Reason : Banking of roads will increase the value of limiting velocity.

    Assertion : As the frictional force increases, the safe velocity limit for taking a turn on an unbanked road also increases.
    Reason : Banking of roads will increase the value of limiting velocity.

    Physics-General
    parallel
    General
    Physics-

    A ball is rolled off the edge of horizontal table at a speed of 4m/sec. It hits the ground after 0.4 second. Which statement given below is true :

    A ball is rolled off the edge of horizontal table at a speed of 4m/sec. It hits the ground after 0.4 second. Which statement given below is true :

    Physics-General
    General
    physics-

    A string of length L is fixed at one end and carries a mass M at the other end. The string makes 2/p revolutions per second around the vertical axis through the fixed end as shown in the figure, then tension in the string is :

    A string of length L is fixed at one end and carries a mass M at the other end. The string makes 2/p revolutions per second around the vertical axis through the fixed end as shown in the figure, then tension in the string is :

    physics-General
    General
    Physics-

    A car moves on a circular road. It describes equal angles about the centre in equal intervals of time. Which of the following statement about the velocity of the car is true :

    A car moves on a circular road. It describes equal angles about the centre in equal intervals of time. Which of the following statement about the velocity of the car is true :

    Physics-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.