Maths-
General
Easy

Question

If P (q) and Q open parentheses fraction numerator pi over denominator 2 end fraction plus theta close parentheses are two points on the ellipse fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction plus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction equals 1, then locus of the mid – point of PQ is

  1. fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction plus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction equals fraction numerator 1 over denominator 2 end fraction    
  2. fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction plus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction equals 4    
  3. fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction plus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction equals 2    
  4. none of these    

hintHint:

Equation of ellipse = fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction plus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction equals 1

The correct answer is: fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction plus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction equals fraction numerator 1 over denominator 2 end fraction


    Coordinate of Point P(theta) = (a costheta , b sintheta)
    Coordinate of Point Q (straight pi over 2 space plus space theta) = ( a cos(straight pi over 2 space plus space theta) , b space sin left parenthesis straight pi over 2 space plus space theta right parenthesis)
    Coordinate of Point Q (straight pi over 2 space plus space theta) = ( -a sin(space theta) , b space cos left parenthesis space theta right parenthesis)
    Let R be the midpoint of P and Q and coordinates of R = (h, k)
    h space equals space fraction numerator a cos theta space minus space a sin theta over denominator 2 end fraction space a n d space k space equals space fraction numerator b sin theta space plus space b cos theta over denominator 2 end fraction
    fraction numerator 2 h over denominator a end fraction space equals space cos theta space minus sin theta space a n d space fraction numerator 2 k over denominator b end fraction space equals space sin theta space plus space cos theta
    left parenthesis fraction numerator 2 h over denominator a end fraction right parenthesis squared space plus space left parenthesis fraction numerator 2 k over denominator b end fraction right parenthesis squared space equals space open parentheses cos theta space minus sin theta close parentheses squared space plus left parenthesis cos theta space plus sin theta right parenthesis squared
    left parenthesis fraction numerator 4 h squared over denominator a squared end fraction right parenthesis space plus space left parenthesis fraction numerator 4 k squared over denominator b squared end fraction right parenthesis space equals space open parentheses cos squared theta space plus sin squared theta space minus space 2 cos theta sin theta close parentheses space plus left parenthesis cos squared theta space plus sin squared theta space plus space 2 cos theta sin theta right parenthesis
    left parenthesis fraction numerator 4 h squared over denominator a squared end fraction right parenthesis space plus space left parenthesis fraction numerator 4 k squared over denominator b squared end fraction right parenthesis space equals space 2
    left parenthesis fraction numerator 2 h squared over denominator a squared end fraction right parenthesis space plus space left parenthesis fraction numerator 2 k squared over denominator b squared end fraction right parenthesis space equals 1 comparing with equation of ellipse i.e. fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction plus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction equals 1
    x squared over a squared plus y squared over b squared equals 1 half

    Related Questions to study

    General
    Maths-

    If CP and CD are semi – conjugate diameters of an ellipse fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction plus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction equals 1 comma then CP2 + CD2 =

    If CP and CD are semi – conjugate diameters of an ellipse fraction numerator x to the power of 2 end exponent over denominator a to the power of 2 end exponent end fraction plus fraction numerator y to the power of 2 end exponent over denominator b to the power of 2 end exponent end fraction equals 1 comma then CP2 + CD2 =

    Maths-General
    General
    Maths-

    The normals to the curve x = a (theta + sin theta), y = a (1 – cos theta) at the points theta = (2n + 1) pi, n element of I are all -

    The normals to the curve x = a (theta + sin theta), y = a (1 – cos theta) at the points theta = (2n + 1) pi, n element of I are all -

    Maths-General
    General
    Maths-

    The normal to the curve x = 3 cos thetacos cubed theta, y = 3 sin thetasin cubedtheta at the point theta = pi/4 passes through the point -

    The normal to the curve x = 3 cos thetacos cubed theta, y = 3 sin thetasin cubedtheta at the point theta = pi/4 passes through the point -

    Maths-General
    parallel
    General
    Maths-

    The normal of the curve given by the equation x = a (sintheta + costheta), y = a (sintheta – costheta) at the point Q is -

    The normal of the curve given by the equation x = a (sintheta + costheta), y = a (sintheta – costheta) at the point Q is -

    Maths-General
    General
    Maths-

    If the tangent at ‘t’ on the curve y = 8 t cubed space minus 1x = 4 t squared space plus space 3 meets the curve again at t subscript 1 and is normal to the curve at that point, then value of t must be -

    If the tangent at ‘t’ on the curve y = 8 t cubed space minus 1x = 4 t squared space plus space 3 meets the curve again at t subscript 1 and is normal to the curve at that point, then value of t must be -

    Maths-General
    General
    Maths-

    The tangent at (t, t squared – t cubed) on the curve y = x squared – x cubed meets the curve again at Q, then abscissa of Q must be -

    The tangent at (t, t squared – t cubed) on the curve y = x squared – x cubed meets the curve again at Q, then abscissa of Q must be -

    Maths-General
    parallel
    General
    Maths-

    If fraction numerator x over denominator a end fraction plus fraction numerator y over denominator b end fraction = 1 is a tangent to the curve x = 4t,y =fraction numerator 4 over denominator t end fraction, t element of R then -

    If fraction numerator x over denominator a end fraction plus fraction numerator y over denominator b end fraction = 1 is a tangent to the curve x = 4t,y =fraction numerator 4 over denominator t end fraction, t element of R then -

    Maths-General
    General
    Maths-

    The line fraction numerator x over denominator a end fraction + fraction numerator y over denominator b end fraction = 1 touches the curve  y space equals space b e to the power of negative x over a end exponent at the point :

    The line fraction numerator x over denominator a end fraction + fraction numerator y over denominator b end fraction = 1 touches the curve  y space equals space b e to the power of negative x over a end exponent at the point :

    Maths-General
    General
    physics

    An object moves in a straight line. It starts from the rest and its acceleration is . 2 ms2.After reaching a certain point it comes back to the original point. In this movement its acceleration  is -3 ms2, till it comes to rest. The total time taken for the movement is 5 second. Calculate the maximum velocity.

    An object moves in a straight line. It starts from the rest and its acceleration is . 2 ms2.After reaching a certain point it comes back to the original point. In this movement its acceleration  is -3 ms2, till it comes to rest. The total time taken for the movement is 5 second. Calculate the maximum velocity.

    physicsGeneral
    parallel
    General
    Maths-

    For the ellipse fraction numerator x to the power of 2 end exponent over denominator 2 end fraction plus fraction numerator y to the power of 2 end exponent over denominator 1 end fraction equals 1 comma the foci are

    For the ellipse fraction numerator x to the power of 2 end exponent over denominator 2 end fraction plus fraction numerator y to the power of 2 end exponent over denominator 1 end fraction equals 1 comma the foci are

    Maths-General
    General
    Maths-

    For the ellipse x squared over 4 plus y squared over 1 equals 1, the latus rectum is

    For the ellipse x squared over 4 plus y squared over 1 equals 1, the latus rectum is

    Maths-General
    General
    Maths-

    The sum of distances of any point on the ellipse 3 x2 + 4y2 = 24 from its foci is

    The sum of distances of any point on the ellipse 3 x2 + 4y2 = 24 from its foci is

    Maths-General
    parallel
    General
    Maths-

    The equations x = a open parentheses fraction numerator 1 minus t to the power of 2 end exponent over denominator 1 plus t to the power of 2 end exponent end fraction close parentheses semicolon y equals fraction numerator 2 b t over denominator 1 plus t to the power of 2 end exponent end fraction semicolon t element of R represent

    The equations x = a open parentheses fraction numerator 1 minus t to the power of 2 end exponent over denominator 1 plus t to the power of 2 end exponent end fraction close parentheses semicolon y equals fraction numerator 2 b t over denominator 1 plus t to the power of 2 end exponent end fraction semicolon t element of R represent

    Maths-General
    General
    Maths-

    The equations x = a cos q, y = b sin q, 0 ≤ q < 2 p, a ≠ b, represent

    The equations x = a cos q, y = b sin q, 0 ≤ q < 2 p, a ≠ b, represent

    Maths-General
    General
    Maths-

    The line y = 2x + c touches the ellipse fraction numerator x to the power of 2 end exponent over denominator 16 end fraction plus fraction numerator y to the power of 2 end exponent over denominator 4 end fraction equals 1 if c is equal to

    The line y = 2x + c touches the ellipse fraction numerator x to the power of 2 end exponent over denominator 16 end fraction plus fraction numerator y to the power of 2 end exponent over denominator 4 end fraction equals 1 if c is equal to

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.