Maths-
General
Easy

Question

In how many ways can 6 prizes be distributed equally among 3 persons?

  1. 6C2 × 4C2    
  2. 6P2 × 4P2    
  3. 3    
  4. 36    

hintHint:

The prizes can be distributed in only one pattern. In this, it can be  2 prizes to each person . So, we will find the number of ways for each of these patterns and hence find the number of ways of distributing the prizes.

The correct answer is: 6C2 × 4C2


    Detailed Solution

    There are 6 prizes to be distributed equally among 3 persons i.e. 2 prize per person.
    For the first person we have to select 2 from 6 = C presuperscript 6 subscript 2
    For the second person we have to select 2 from 4 = C presuperscript 4 subscript 2
    For the third person we have to select 2 from 2 = C presuperscript 2 subscript 2 space equals space 1
    Thus, 6 prizes can be distributed equally among 3 persons in C presuperscript 6 subscript 2 cross times C presuperscript 4 subscript 2 ways.

    In combinatorics, the rule of sum or addition principle states that it is the idea that if the complete A ways of doing something and B ways of doing something and B ways of doing something, we cannot do at the same time, then there are (A + B) ways of choosing one of the actions. In this question, there is a possibility that the student might miss considering all the cases. They may forget to consider case 2 and get a different answer.

    Related Questions to study

    General
    Maths-

    The number of ways in which mn students can be distributed equally among m sections is-

    While solving this question, the possible mistake one can make is by always choosing n students for all sections from mn students which is totally wrong because at a time one student can only be in 1 section. So, if n students are selected for 1 section then in the second section, we will choose from (mn – n).

    The number of ways in which mn students can be distributed equally among m sections is-

    Maths-General

    While solving this question, the possible mistake one can make is by always choosing n students for all sections from mn students which is totally wrong because at a time one student can only be in 1 section. So, if n students are selected for 1 section then in the second section, we will choose from (mn – n).

    General
    Maths-

    The number of ways in which 20 volunteers can be divided into groups of 4, 7 and 9 persons is-

    The number of ways in which 20 volunteers can be divided into groups of 4, 7 and 9 persons is-

    Maths-General
    General
    Maths-

    The number of ways to make 5 heaps of 3books each from 15 different books is-

    In these type of questions, it is to be always remembered that separate approaches need to be adopted for distinct and identical objects. Here, the books were distinct or different.

    The number of ways to make 5 heaps of 3books each from 15 different books is-

    Maths-General

    In these type of questions, it is to be always remembered that separate approaches need to be adopted for distinct and identical objects. Here, the books were distinct or different.

    parallel
    General
    Maths-

    The line among the following that touches the y to the power of 2 end exponent equals 4 a x is

    The line among the following that touches the y to the power of 2 end exponent equals 4 a x is

    Maths-General
    General
    Maths-

    The number of necklaces which can be formed by selecting 4 beads out of 6 beads of different coloured glasses and 4 beads out of 5 beads of different metal, is-

    The number of necklaces which can be formed by selecting 4 beads out of 6 beads of different coloured glasses and 4 beads out of 5 beads of different metal, is-

    Maths-General
    General
    Maths-

    The number of ways in which 20 persons can sit on 8 chairs round a circular table is-

    The number of ways in which 20 persons can sit on 8 chairs round a circular table is-

    Maths-General
    parallel
    General
    Maths-

    The number of numbers can be formed by taking any 2 digits from digits 6,7,8,9 and 3 digits from 1, 2, 3, 4, 5 is -

    The number of numbers can be formed by taking any 2 digits from digits 6,7,8,9 and 3 digits from 1, 2, 3, 4, 5 is -

    Maths-General
    General
    Maths-

    How many numbers consisting of 5 digits can be formed in which the digits 3,4 and 7 are used only once and the digit 5 is used twice-

    How many numbers consisting of 5 digits can be formed in which the digits 3,4 and 7 are used only once and the digit 5 is used twice-

    Maths-General
    General
    Maths-

    The number of ways of distributing n prizes among n boys when any of the student does not get all the prizes is-

    The number of ways of distributing n prizes among n boys when any of the student does not get all the prizes is-

    Maths-General
    parallel
    General
    Maths-

    If the line x plus y plus k equals 0 is a tangent to the parabola x to the power of 2 end exponent equals 4 y then k=

    If the line x plus y plus k equals 0 is a tangent to the parabola x to the power of 2 end exponent equals 4 y then k=

    Maths-General
    General
    Maths-

    The number of ways in which n prizes can be distributed among n students when each student is eligible to get any number of prizes is-

    The number of ways in which n prizes can be distributed among n students when each student is eligible to get any number of prizes is-

    Maths-General
    General
    Maths-

    In how many ways can six different rings be wear in four fingers?

    It is important to note that we have used a basic fundamental principle of counting to find the total ways. Also, it is important to notice that each ring has 4 ways as it has not been given that each finger must have at least one ring. So, there can be 6 rings in a finger alone and remaining all the fingers empty.

    In how many ways can six different rings be wear in four fingers?

    Maths-General

    It is important to note that we have used a basic fundamental principle of counting to find the total ways. Also, it is important to notice that each ring has 4 ways as it has not been given that each finger must have at least one ring. So, there can be 6 rings in a finger alone and remaining all the fingers empty.

    parallel
    General
    Maths-

    How many signals can be given by means of 10 different flags when at a time 4 flags are used, one above the other?

    How many signals can be given by means of 10 different flags when at a time 4 flags are used, one above the other?

    Maths-General
    General
    Maths-

    The number of ways in which three persons can dress themselves when they have 4 shirts. 5 pants and 6 hats between them, is-

    The number of ways in which three persons can dress themselves when they have 4 shirts. 5 pants and 6 hats between them, is-

    Maths-General
    General
    Maths-

    Eleven animals of a circus have to be placed in eleven cages, one in each cage. If four of the cages are too small for six of the animals, the number of ways of caging the animals is-

    Eleven animals of a circus have to be placed in eleven cages, one in each cage. If four of the cages are too small for six of the animals, the number of ways of caging the animals is-

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.