Maths-
General
Easy

Question

The line among the following that touches the y to the power of 2 end exponent equals 4 a x is

  1. x plus m y plus a m cubed equals 0    
  2. x minus m y plus a m to the power of 2 end exponent equals 0    
  3. x plus m y minus a m squared equals 0    
  4. y plus m x plus a m to the power of 2 end exponent equals 0    

hintHint:

The equation of tangent to parabola is given as y equals m x space plus space a over m with slope = m.
Similarly find the equation of tangent to parabola with slope = 1 over m and simplify.

The correct answer is: x minus m y plus a m to the power of 2 end exponent equals 0


     Condition 1
    The line with slope 'm' is a tangent to parabola  y to the power of 2 end exponent equals 4 a x
    The equation of tangent to parabola is given as y equals m x space plus space a over m (slope = m)
    Condition 2
    If slope = 1 over m , then equation of tangent
    rightwards double arrow y equals 1 over m x space plus space fraction numerator a over denominator begin display style bevelled 1 over m end style end fraction space equals space x over m space plus space m a

rightwards double arrow y equals space fraction numerator x space plus space m squared a over denominator m end fraction
rightwards double arrow y m space equals space x space plus m squared a
space

    Thus, equation of lines touching parabola with slope 1 over m is x minus m y plus a m to the power of 2 end exponent equals 0.

    Related Questions to study

    General
    Maths-

    The number of necklaces which can be formed by selecting 4 beads out of 6 beads of different coloured glasses and 4 beads out of 5 beads of different metal, is-

    The number of necklaces which can be formed by selecting 4 beads out of 6 beads of different coloured glasses and 4 beads out of 5 beads of different metal, is-

    Maths-General
    General
    Maths-

    The number of ways in which 20 persons can sit on 8 chairs round a circular table is-

    The number of ways in which 20 persons can sit on 8 chairs round a circular table is-

    Maths-General
    General
    Maths-

    The number of numbers can be formed by taking any 2 digits from digits 6,7,8,9 and 3 digits from 1, 2, 3, 4, 5 is -

    The number of numbers can be formed by taking any 2 digits from digits 6,7,8,9 and 3 digits from 1, 2, 3, 4, 5 is -

    Maths-General
    parallel
    General
    Maths-

    How many numbers consisting of 5 digits can be formed in which the digits 3,4 and 7 are used only once and the digit 5 is used twice-

    How many numbers consisting of 5 digits can be formed in which the digits 3,4 and 7 are used only once and the digit 5 is used twice-

    Maths-General
    General
    Maths-

    The number of ways of distributing n prizes among n boys when any of the student does not get all the prizes is-

    The number of ways of distributing n prizes among n boys when any of the student does not get all the prizes is-

    Maths-General
    General
    Maths-

    If the line x plus y plus k equals 0 is a tangent to the parabola x to the power of 2 end exponent equals 4 y then k=

    If the line x plus y plus k equals 0 is a tangent to the parabola x to the power of 2 end exponent equals 4 y then k=

    Maths-General
    parallel
    General
    Maths-

    The number of ways in which n prizes can be distributed among n students when each student is eligible to get any number of prizes is-

    The number of ways in which n prizes can be distributed among n students when each student is eligible to get any number of prizes is-

    Maths-General
    General
    Maths-

    In how many ways can six different rings be wear in four fingers?

    It is important to note that we have used a basic fundamental principle of counting to find the total ways. Also, it is important to notice that each ring has 4 ways as it has not been given that each finger must have at least one ring. So, there can be 6 rings in a finger alone and remaining all the fingers empty.

    In how many ways can six different rings be wear in four fingers?

    Maths-General

    It is important to note that we have used a basic fundamental principle of counting to find the total ways. Also, it is important to notice that each ring has 4 ways as it has not been given that each finger must have at least one ring. So, there can be 6 rings in a finger alone and remaining all the fingers empty.

    General
    Maths-

    How many signals can be given by means of 10 different flags when at a time 4 flags are used, one above the other?

    How many signals can be given by means of 10 different flags when at a time 4 flags are used, one above the other?

    Maths-General
    parallel
    General
    Maths-

    The number of ways in which three persons can dress themselves when they have 4 shirts. 5 pants and 6 hats between them, is-

    The number of ways in which three persons can dress themselves when they have 4 shirts. 5 pants and 6 hats between them, is-

    Maths-General
    General
    Maths-

    Eleven animals of a circus have to be placed in eleven cages, one in each cage. If four of the cages are too small for six of the animals, the number of ways of caging the animals is-

    Eleven animals of a circus have to be placed in eleven cages, one in each cage. If four of the cages are too small for six of the animals, the number of ways of caging the animals is-

    Maths-General
    General
    Maths-

    Eight chairs are numbered from 1 to 8. Two women and three men wish to occupy one chair each. First women choose the chairs from amongst the chairs marked 1 to 4; and then the men select the chairs from the remaining. The number of possible arrangements is-

    It is important to note that we have used a fact that C presuperscript n subscript r = P presuperscript n subscript r space. space r factorial. This can be understood as we know that C presuperscript n subscript r = fraction numerator n factorial over denominator left parenthesis n minus r right parenthesis factorial space r factorial end fractionand P presuperscript n subscript r = fraction numerator n factorial over denominator left parenthesis n minus r right parenthesis factorial space end fraction  . So, substituting this we have C presuperscript n subscript r = P presuperscript n subscript r space. space r factorial . 

    Eight chairs are numbered from 1 to 8. Two women and three men wish to occupy one chair each. First women choose the chairs from amongst the chairs marked 1 to 4; and then the men select the chairs from the remaining. The number of possible arrangements is-

    Maths-General

    It is important to note that we have used a fact that C presuperscript n subscript r = P presuperscript n subscript r space. space r factorial. This can be understood as we know that C presuperscript n subscript r = fraction numerator n factorial over denominator left parenthesis n minus r right parenthesis factorial space r factorial end fractionand P presuperscript n subscript r = fraction numerator n factorial over denominator left parenthesis n minus r right parenthesis factorial space end fraction  . So, substituting this we have C presuperscript n subscript r = P presuperscript n subscript r space. space r factorial . 

    parallel
    General
    Maths-

    A tea party is arranged of 16 persons along two sides of a long table with 8 chairs on each side. 4 men wish to sit on one particular side and 2 on the other side. In how many ways can they be seated ?

    Whenever we face such types of problems the key point is to make special arrangements for the people who are in need of it, then arrange the remaining. Now combination comes with permutation as there are possibilities of these 8 people sitting on one side to rearrange. Thus this concept into consideration, to get through the answer.

    A tea party is arranged of 16 persons along two sides of a long table with 8 chairs on each side. 4 men wish to sit on one particular side and 2 on the other side. In how many ways can they be seated ?

    Maths-General

    Whenever we face such types of problems the key point is to make special arrangements for the people who are in need of it, then arrange the remaining. Now combination comes with permutation as there are possibilities of these 8 people sitting on one side to rearrange. Thus this concept into consideration, to get through the answer.

    General
    Maths-

    If (m+n) P2 = 56 and m–nP2 = 12 then (m, n) equals-

    If (m+n) P2 = 56 and m–nP2 = 12 then (m, n) equals-

    Maths-General
    General
    physics-

    A thin uniform annular disc (see figure) of mass M has outer radius 4 R and inner radius 3 R. The work required to take a unit mass from point P on its axis to infinity is

    A thin uniform annular disc (see figure) of mass M has outer radius 4 R and inner radius 3 R. The work required to take a unit mass from point P on its axis to infinity is

    physics-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.