Maths-
General
Easy

Question

Let alpha blank a n d blank beta be such that pi less than alpha minus beta less than 3 pi. If sin invisible function application alpha plus sin invisible function application beta equals negative fraction numerator 21 over denominator 65 end fraction blank a n d cos invisible function application alpha plus cos invisible function application beta equals negative fraction numerator 17 over denominator 65 end fraction comma then the value of cos invisible function application fraction numerator alpha minus beta over denominator 2 end fraction is

  1. negative fraction numerator 3 over denominator square root of 130 end fraction  
  2. fraction numerator 3 over denominator square root of 130 end fraction  
  3. fraction numerator 6 over denominator 65 end fraction  
  4. negative fraction numerator 6 over denominator 65 end fraction  

The correct answer is: negative fraction numerator 3 over denominator square root of 130 end fraction


    W e blank h a v e sin invisible function application alpha plus sin invisible function application beta equals negative fraction numerator 21 over denominator 65 end fraction blank
    cos invisible function application alpha plus cos invisible function application beta equals negative fraction numerator 17 over denominator 65 end fraction
    Squaring Eq. (i), we get sin to the power of 2 end exponent invisible function application alpha plus sin to the power of 2 end exponent invisible function application beta plus 2 sin invisible function application alpha sin invisible function application beta equals open parentheses fraction numerator 21 over denominator 65 end fraction close parentheses to the power of 2 end exponent
    Squaring Eq. (ii), we get cos to the power of 2 end exponent invisible function application alpha plus cos to the power of 2 end exponent invisible function application beta plus 2 cos invisible function application alpha cos invisible function application beta equals open parentheses fraction numerator 27 over denominator 65 end fraction close parentheses to the power of 2 end exponent
    Adding Eqs. (iii) and (iv), we get 2 plus 2 cos invisible function application open parentheses alpha minus beta close parentheses equals fraction numerator 1 over denominator open parentheses 65 close parentheses to the power of 2 end exponent end fraction open square brackets open parentheses 27 close parentheses to the power of 2 end exponent plus open parentheses 21 close parentheses to the power of 2 end exponent close square brackets equals fraction numerator 1 over denominator open parentheses 65 close parentheses to the power of 2 end exponent end fraction open parentheses 729 plus 441 close parentheses
    rightwards double arrow 2 plus 2 blank cos invisible function application open parentheses alpha minus beta close parentheses equals fraction numerator 1 over denominator open parentheses 65 close parentheses to the power of 2 end exponent end fraction open parentheses 1170 close parentheses equals fraction numerator 18 over denominator 65 end fraction
    rightwards double arrow 1 plus cos invisible function application open parentheses alpha minus beta close parentheses equals fraction numerator 9 over denominator 65 end fraction
    rightwards double arrow 2 cos to the power of 2 end exponent invisible function application fraction numerator alpha minus beta over denominator 2 end fraction equals fraction numerator 9 over denominator 65 end fraction
    rightwards double arrow cos invisible function application fraction numerator alpha minus beta over denominator 2 end fraction equals negative fraction numerator 3 over denominator square root of 130 end fraction blank open square brackets because pi less than alpha minus beta less than 3 pi rightwards double arrow fraction numerator pi over denominator 2 end fraction less than fraction numerator alpha minus beta over denominator 2 end fraction less than fraction numerator 3 pi over denominator 2 end fraction rightwards double arrow cos invisible function application open parentheses fraction numerator alpha minus beta over denominator 2 end fraction close parentheses less than 0 close square brackets

    Related Questions to study

    General
    Maths-

    One of the general solutions of 4 sin to the power of 4 end exponent invisible function application x plus cos to the power of 4 end exponent invisible function application x equals 1 is

    One of the general solutions of 4 sin to the power of 4 end exponent invisible function application x plus cos to the power of 4 end exponent invisible function application x equals 1 is

    Maths-General
    General
    Maths-

    Which of the following is not the value of sin invisible function application 27 degree minus cos invisible function application 27 degree ?

    Which of the following is not the value of sin invisible function application 27 degree minus cos invisible function application 27 degree ?

    Maths-General
    General
    Maths-

    The sum of all roots of sin invisible function application open parentheses pi log subscript 3 end subscript invisible function application open parentheses fraction numerator 1 over denominator x end fraction close parentheses close parentheses equals 0 inblank open parentheses 0 comma blank 2 pi close parentheses is

    The sum of all roots of sin invisible function application open parentheses pi log subscript 3 end subscript invisible function application open parentheses fraction numerator 1 over denominator x end fraction close parentheses close parentheses equals 0 inblank open parentheses 0 comma blank 2 pi close parentheses is

    Maths-General
    parallel
    General
    Maths-

    If sin invisible function application theta subscript 1 end subscript plus sin invisible function application theta subscript 2 end subscript plus sin invisible function application theta subscript 3 end subscript equals 3 comma thencos invisible function application theta subscript 1 end subscript plus cos invisible function application theta subscript 2 end subscript plus cos invisible function application theta subscript 3 end subscript is equal to

    If sin invisible function application theta subscript 1 end subscript plus sin invisible function application theta subscript 2 end subscript plus sin invisible function application theta subscript 3 end subscript equals 3 comma thencos invisible function application theta subscript 1 end subscript plus cos invisible function application theta subscript 2 end subscript plus cos invisible function application theta subscript 3 end subscript is equal to

    Maths-General
    General
    Maths-

    The set of values of theta satisfying the inequation 2 sin to the power of 2 end exponent invisible function application theta minus 5 sin invisible function application theta plus 2 greater than 0, where 0 less than theta less than 2 pi, is

    The set of values of theta satisfying the inequation 2 sin to the power of 2 end exponent invisible function application theta minus 5 sin invisible function application theta plus 2 greater than 0, where 0 less than theta less than 2 pi, is

    Maths-General
    General
    Maths-

    In any triangle A B C comma fraction numerator a to the power of 2 end exponent plus b to the power of 2 end exponent plus c to the power of 2 end exponent over denominator R to the power of 2 end exponent end fraction has the maximum value of

    In any triangle A B C comma fraction numerator a to the power of 2 end exponent plus b to the power of 2 end exponent plus c to the power of 2 end exponent over denominator R to the power of 2 end exponent end fraction has the maximum value of

    Maths-General
    parallel
    General
    Maths-

    In triangle A B C comma blank a equals 5 comma blank b equals 4 blankandblank c equals 3. blank G is the centroid of the triangle. Circumradius of triangle G A B is equal to

    In triangle A B C comma blank a equals 5 comma blank b equals 4 blankandblank c equals 3. blank G is the centroid of the triangle. Circumradius of triangle G A B is equal to

    Maths-General
    General
    Maths-

    We are given b comma blank c blankand sin invisible function application B such that B is acute and b less than c sin invisible function application B. Then

    We are given b comma blank c blankand sin invisible function application B such that B is acute and b less than c sin invisible function application B. Then

    Maths-General
    General
    Maths-

    Number of ordered pairopen parentheses s close parentheses open parentheses a comma blank b close parentheses for each of which the equality a open parentheses cos invisible function application x minus 1 close parentheses plus b to the power of 2 end exponent equals cos invisible function application open parentheses a x plus b to the power of 2 end exponent close parentheses minus 1 holds true for all x element of R are

    Number of ordered pairopen parentheses s close parentheses open parentheses a comma blank b close parentheses for each of which the equality a open parentheses cos invisible function application x minus 1 close parentheses plus b to the power of 2 end exponent equals cos invisible function application open parentheses a x plus b to the power of 2 end exponent close parentheses minus 1 holds true for all x element of R are

    Maths-General
    parallel
    General
    Maths-

    I f tan invisible function application x equals b divided by a comma blank t h e n blank square root of open parentheses a plus b close parentheses divided by open parentheses a minus b close parentheses end root plus square root of open parentheses a minus b close parentheses divided by open parentheses a plus b close parentheses end root is equal to

    I f tan invisible function application x equals b divided by a comma blank t h e n blank square root of open parentheses a plus b close parentheses divided by open parentheses a minus b close parentheses end root plus square root of open parentheses a minus b close parentheses divided by open parentheses a plus b close parentheses end root is equal to

    Maths-General
    General
    Maths-

    The total number of solution of sin to the power of 4 end exponent invisible function application x plus cos to the power of 4 end exponent invisible function application x equals sin invisible function application x cos invisible function application x inblank open square brackets 0 comma blank 2 pi close square brackets blankis equal to

    The total number of solution of sin to the power of 4 end exponent invisible function application x plus cos to the power of 4 end exponent invisible function application x equals sin invisible function application x cos invisible function application x inblank open square brackets 0 comma blank 2 pi close square brackets blankis equal to

    Maths-General
    General
    Maths-

    I f cos to the power of 2 end exponent invisible function application A plus cos to the power of 2 end exponent invisible function application B plus cos to the power of 2 end exponent invisible function application C equals 1 comma blank t h e n blank increment A B C blank i s

    I f cos to the power of 2 end exponent invisible function application A plus cos to the power of 2 end exponent invisible function application B plus cos to the power of 2 end exponent invisible function application C equals 1 comma blank t h e n blank increment A B C blank i s

    Maths-General
    parallel
    General
    Maths-

    If cos invisible function application p theta plus cos invisible function application q theta equals 0 comma blankthen the different values of theta are in A.P. where the common difference is

    If cos invisible function application p theta plus cos invisible function application q theta equals 0 comma blankthen the different values of theta are in A.P. where the common difference is

    Maths-General
    General
    Maths-

    If x subscript 1 end subscript blank a n d blank x subscript 2 end subscript are the roots of the equation e to the power of 2 end exponent blank. x to the power of ln invisible function application x end exponent equals x to the power of 3 end exponent blank w i t h blank x subscript 1 end subscript greater than x subscript 2 end subscript comma then

    If x subscript 1 end subscript blank a n d blank x subscript 2 end subscript are the roots of the equation e to the power of 2 end exponent blank. x to the power of ln invisible function application x end exponent equals x to the power of 3 end exponent blank w i t h blank x subscript 1 end subscript greater than x subscript 2 end subscript comma then

    Maths-General
    General
    Maths-

    sec to the power of 2 end exponent invisible function application theta equals fraction numerator 4 x y over denominator open parentheses x plus y close parentheses to the power of 2 end exponent end fraction is true if and only if

    sec to the power of 2 end exponent invisible function application theta equals fraction numerator 4 x y over denominator open parentheses x plus y close parentheses to the power of 2 end exponent end fraction is true if and only if

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.