Maths-
General
Easy

Question

The total number of solution of sin to the power of 4 end exponent invisible function application x plus cos to the power of 4 end exponent invisible function application x equals sin invisible function application x cos invisible function application x inblank open square brackets 0 comma blank 2 pi close square brackets blankis equal to

  1. 2  
  2. 4  
  3. 6  
  4. None of these  

The correct answer is: 2


    sin to the power of 4 end exponent invisible function application x plus cos to the power of 4 end exponent invisible function application x equals sin invisible function application x cos invisible function application x
    rightwards double arrow open parentheses sin to the power of 2 end exponent invisible function application x plus cos to the power of 2 end exponent invisible function application x close parentheses to the power of 2 end exponent minus 2 sin to the power of 2 end exponent invisible function application x cos to the power of 2 end exponent invisible function application x equals sin invisible function application x cos invisible function application x
    rightwards double arrow 1 minus fraction numerator sin to the power of 2 end exponent invisible function application 2 x over denominator 2 end fraction equals fraction numerator sin invisible function application 2 x over denominator 2 end fraction
    rightwards double arrow sin to the power of 2 end exponent invisible function application 2 x plus sin invisible function application 2 x minus 2 equals 0
    rightwards double arrow open parentheses sin invisible function application 2 x plus 2 close parentheses open parentheses sin invisible function application 2 x minus 1 close parentheses equals 0
    rightwards double arrow sin invisible function application 2 x equals 1
    rightwards double arrow 2 x equals open parentheses 4 n plus 1 close parentheses fraction numerator pi over denominator 2 end fraction comma blank n element of Z
    rightwards double arrow x equals open parentheses 4 n plus 1 close parentheses fraction numerator pi over denominator 4 end fraction comma n element of Z
    equals fraction numerator pi over denominator 4 end fraction comma fraction numerator 5 pi over denominator 4 end fraction open parentheses because x element of open square brackets 0 comma blank 2 pi close square brackets close parentheses
    Thus, there are two solutions

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.