Maths-
General
Easy

Question

Let U be the universal set for sets A and B such that n open parentheses A close parentheses equals 200 comma n open parentheses B close parentheses equals 300 and n open parentheses A intersection B close parentheses equals 100. Then, n left parenthesis A ´ intersection B ´ right parenthesis is equal to 300, provided that n left parenthesis blank U right parenthesis is equal to

  1. 600  
  2. 700  
  3. 800  
  4. 900  

The correct answer is: 700


    We have,
    n open parentheses A to the power of ´ end exponent intersection B to the power of ´ end exponent close parentheses equals n left parenthesis open parentheses A union B close parentheses ´ right parenthesis
    rightwards double arrow n open parentheses A to the power of ´ end exponent intersection B to the power of ´ end exponent close parentheses equals n open parentheses U close parentheses minus n left parenthesis A union B right parenthesis
    rightwards double arrow n open parentheses A to the power of ´ end exponent intersection B to the power of ´ end exponent close parentheses equals n open parentheses U close parentheses minus open curly brackets n open parentheses A close parentheses plus n open parentheses B close parentheses minus n open parentheses A intersection B close parentheses close curly brackets
    rightwards double arrow 300 equals n blank open parentheses U close parentheses minus left curly bracket 200 plus 300 minus 100 right curly bracket
    rightwards double arrow n open parentheses U close parentheses equals 700

    Related Questions to study

    General
    Maths-

    If A and B are two sets, then A intersection left parenthesis A union B right parenthesis equals

    If A and B are two sets, then A intersection left parenthesis A union B right parenthesis equals

    Maths-General
    General
    Maths-

    Let A equals open curly brackets 12 comma 34 close curly brackets comma and let R equals left curly bracket open parentheses 22 close parentheses comma open parentheses 33 close parentheses comma open parentheses 44 close parentheses comma left parenthesis 12 right parenthesis right curly bracket be a relation on A. Then, R is

    Let A equals open curly brackets 12 comma 34 close curly brackets comma and let R equals left curly bracket open parentheses 22 close parentheses comma open parentheses 33 close parentheses comma open parentheses 44 close parentheses comma left parenthesis 12 right parenthesis right curly bracket be a relation on A. Then, R is

    Maths-General
    General
    Maths-

    left curly bracket n open parentheses n plus 1 close parentheses open parentheses 2 n plus 1 close parentheses colon n element of Z right curly bracket subset of

    left curly bracket n open parentheses n plus 1 close parentheses open parentheses 2 n plus 1 close parentheses colon n element of Z right curly bracket subset of

    Maths-General
    parallel
    General
    Maths-

    Two points P and Q in a plane are related if O P equals O Q comma where O is a fixed point. This relation is

    Two points P and Q in a plane are related if O P equals O Q comma where O is a fixed point. This relation is

    Maths-General
    General
    Maths-

    The void relation on a set A is

    The void relation on a set A is

    Maths-General
    General
    Maths-

    If A equals open curly brackets theta blank colon cos invisible function application theta greater than negative fraction numerator 1 over denominator 2 end fraction comma 0 less or equal than theta less or equal than pi close curly brackets and
    B equals open curly brackets theta blank colon sin invisible function application theta greater than fraction numerator 1 over denominator 2 end fraction comma fraction numerator pi over denominator 3 end fraction less or equal than theta less or equal than pi close curly brackets comma then

    If A equals open curly brackets theta blank colon cos invisible function application theta greater than negative fraction numerator 1 over denominator 2 end fraction comma 0 less or equal than theta less or equal than pi close curly brackets and
    B equals open curly brackets theta blank colon sin invisible function application theta greater than fraction numerator 1 over denominator 2 end fraction comma fraction numerator pi over denominator 3 end fraction less or equal than theta less or equal than pi close curly brackets comma then

    Maths-General
    parallel
    General
    Maths-

    Out of 800 boys in a school 224 played cricket, 240 played hockey and 336 played basketball. Of the total, 64 played both basketball and hockey; 80 played cricket and basketball and 40 played cricket and hockey; 24 played all the three games. The number of boys who did not play any game is

    Out of 800 boys in a school 224 played cricket, 240 played hockey and 336 played basketball. Of the total, 64 played both basketball and hockey; 80 played cricket and basketball and 40 played cricket and hockey; 24 played all the three games. The number of boys who did not play any game is

    Maths-General
    General
    Maths-

    If A equals open curly brackets n colon fraction numerator n to the power of 3 end exponent plus 5 n to the power of 2 end exponent plus 2 over denominator n end fraction blank i s blank a n blank i n t e g e r blank a n d blank i t s e l f blank i s blank a n blank i n t e g e r close curly brackets comma then the number of elements in the set A comma is

    If A equals open curly brackets n colon fraction numerator n to the power of 3 end exponent plus 5 n to the power of 2 end exponent plus 2 over denominator n end fraction blank i s blank a n blank i n t e g e r blank a n d blank i t s e l f blank i s blank a n blank i n t e g e r close curly brackets comma then the number of elements in the set A comma is

    Maths-General
    General
    Maths-

    If A equals open curly brackets 1 comma blank 2 comma blank 3 close curly brackets comma blank B equals left curly bracket a comma blank b right curly bracket, then A cross times B mapped A to Bis

    If A equals open curly brackets 1 comma blank 2 comma blank 3 close curly brackets comma blank B equals left curly bracket a comma blank b right curly bracket, then A cross times B mapped A to Bis

    Maths-General
    parallel
    General
    Maths-

    Statement 1:1 to the power of 99 end exponent plus 2 to the power of 99 end exponent plus horizontal ellipsis plus 100 to the power of 99 end exponent is divisible by 10100
    Statement 2: a to the power of n end exponent plus b to the power of n end exponent is divisible by a plus b if n is odd

    Statement 1:1 to the power of 99 end exponent plus 2 to the power of 99 end exponent plus horizontal ellipsis plus 100 to the power of 99 end exponent is divisible by 10100
    Statement 2: a to the power of n end exponent plus b to the power of n end exponent is divisible by a plus b if n is odd

    Maths-General
    General
    Maths-

    Statement 1:Let F subscript 1 end subscript open parentheses n close parentheses equals 1 plus fraction numerator 1 over denominator 2 end fraction plus fraction numerator 1 over denominator 3 end fraction plus... plus fraction numerator 1 over denominator n end fraction, then not stretchy sum from r equals 1 to n of F subscript 1 end subscript open parentheses r close parentheses equals open parentheses n plus 1 close parentheses F subscript 1 end subscript open parentheses n close parentheses minus n.
    Statement 2:fraction numerator 1 to the power of negative 1 end exponent plus 2 to the power of negative 1 end exponent plus 3 to the power of negative 1 end exponent plus... plus n to the power of negative 1 end exponent over denominator n end fraction greater than open parentheses fraction numerator 1 plus 2 plus 3 plus... plus n over denominator n end fraction close parentheses to the power of negative 1 end exponentor open parentheses 1 plus fraction numerator 1 over denominator 2 end fraction plus fraction numerator 1 over denominator 3 end fraction plus plus... fraction numerator 1 over denominator n end fraction close parentheses greater than fraction numerator n to the power of 2 end exponent over denominator not stretchy sum n end fractionor open parentheses 1 plus fraction numerator 1 over denominator 2 end fraction plus fraction numerator 1 over denominator 3 end fraction plus... plus fraction numerator 1 over denominator n end fraction close parentheses greater than fraction numerator 2 n over denominator left parenthesis n plus 1 right parenthesis end fraction

    Statement 1:Let F subscript 1 end subscript open parentheses n close parentheses equals 1 plus fraction numerator 1 over denominator 2 end fraction plus fraction numerator 1 over denominator 3 end fraction plus... plus fraction numerator 1 over denominator n end fraction, then not stretchy sum from r equals 1 to n of F subscript 1 end subscript open parentheses r close parentheses equals open parentheses n plus 1 close parentheses F subscript 1 end subscript open parentheses n close parentheses minus n.
    Statement 2:fraction numerator 1 to the power of negative 1 end exponent plus 2 to the power of negative 1 end exponent plus 3 to the power of negative 1 end exponent plus... plus n to the power of negative 1 end exponent over denominator n end fraction greater than open parentheses fraction numerator 1 plus 2 plus 3 plus... plus n over denominator n end fraction close parentheses to the power of negative 1 end exponentor open parentheses 1 plus fraction numerator 1 over denominator 2 end fraction plus fraction numerator 1 over denominator 3 end fraction plus plus... fraction numerator 1 over denominator n end fraction close parentheses greater than fraction numerator n to the power of 2 end exponent over denominator not stretchy sum n end fractionor open parentheses 1 plus fraction numerator 1 over denominator 2 end fraction plus fraction numerator 1 over denominator 3 end fraction plus... plus fraction numerator 1 over denominator n end fraction close parentheses greater than fraction numerator 2 n over denominator left parenthesis n plus 1 right parenthesis end fraction

    Maths-General
    General
    Maths-

    Statement 1:If an infinite G.P. has 2nd term x and its sum is 4, then x belongs to left parenthesis negative 8 comma blank 1 right parenthesis
    Statement 2:Sum of an infinite G.P. is finite if for its common ratio r comma blank 0 less than open vertical bar r close vertical bar less than 1

    Statement 1:If an infinite G.P. has 2nd term x and its sum is 4, then x belongs to left parenthesis negative 8 comma blank 1 right parenthesis
    Statement 2:Sum of an infinite G.P. is finite if for its common ratio r comma blank 0 less than open vertical bar r close vertical bar less than 1

    Maths-General
    parallel
    General
    Maths-

    Statement 1:Coefficient of x to the power of 14 end exponent in open parentheses 1 plus 2 x plus 3 x to the power of 2 end exponent plus horizontal ellipsis plus 16 x to the power of 15 end exponent close parentheses to the power of 2 end exponent is 560
    Statement 2:not stretchy sum from r equals 1 to n of r left parenthesis n minus r right parenthesis equals fraction numerator n left parenthesis n to the power of 2 end exponent minus 1 right parenthesis over denominator 6 end fraction

    Statement 1:Coefficient of x to the power of 14 end exponent in open parentheses 1 plus 2 x plus 3 x to the power of 2 end exponent plus horizontal ellipsis plus 16 x to the power of 15 end exponent close parentheses to the power of 2 end exponent is 560
    Statement 2:not stretchy sum from r equals 1 to n of r left parenthesis n minus r right parenthesis equals fraction numerator n left parenthesis n to the power of 2 end exponent minus 1 right parenthesis over denominator 6 end fraction

    Maths-General
    General
    Maths-

    Statement 1:x equals 1111 midline horizontal ellipsis 91 times is composite number
    Statement 2:91 is composite number

    Statement 1:x equals 1111 midline horizontal ellipsis 91 times is composite number
    Statement 2:91 is composite number

    Maths-General
    General
    Maths-

    Statement 1:The numbers square root of 2 comma blank square root of 3 comma blank square root of 5 cannot be the terms of a single A.P. with non-zero common difference
    Statement 2:If p comma blank q comma blank r left parenthesis p not equal to q right parenthesis are terms (not necessarily consecutive) of an A.P., then there exists a rational number k such that left parenthesis r minus q right parenthesis divided by left parenthesis q minus p right parenthesis equals k

    Statement 1:The numbers square root of 2 comma blank square root of 3 comma blank square root of 5 cannot be the terms of a single A.P. with non-zero common difference
    Statement 2:If p comma blank q comma blank r left parenthesis p not equal to q right parenthesis are terms (not necessarily consecutive) of an A.P., then there exists a rational number k such that left parenthesis r minus q right parenthesis divided by left parenthesis q minus p right parenthesis equals k

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.