Maths-
General
Easy

Question

Statement 1:x equals 1111 midline horizontal ellipsis 91 times is composite number
Statement 2:91 is composite number

  1. Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1  
  2. Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1  
  3. Statement 1 is True, Statement 2 is False  
  4. Statement 1 is False, Statement 2 is True  

The correct answer is: Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1


    x equals 1111 horizontal ellipsis 91 blank t i m e s
    equals 1 plus 10 plus 10 to the power of 2 end exponent plus 10 to the power of 3 end exponent plus horizontal ellipsis plus 10 to the power of 90 end exponent
    equals fraction numerator 1 open parentheses 10 to the power of 91 end exponent minus 1 close parentheses over denominator 10 minus 1 end fraction
    equals fraction numerator open parentheses 10 to the power of 13 cross times 7 end exponent minus 1 close parentheses over denominator 10 minus 1 end fraction
    equals fraction numerator open parentheses open parentheses 10 to the power of 13 end exponent close parentheses to the power of 7 end exponent minus 1 close parentheses over denominator 10 to the power of 13 end exponent minus 1 end fraction cross times fraction numerator open parentheses 10 to the power of 13 end exponent minus 1 close parentheses over denominator 10 minus 1 end fraction
    equals open parentheses 1 plus 10 to the power of 13 end exponent plus 10 to the power of 26 end exponent plus...10 to the power of 78 end exponent close parentheses cross times left parenthesis 1 plus 10 plus 10 to the power of 2 end exponent plus... plus 10 to the power of 12 end exponent right parenthesis
    =composite numbers
    But statement 2 is not a correct explanation of statement 1 as 111 has 1 digit 3 times, and 3 is a prime number but 111 equals 3 cross times 37 is a composite number. Hence ((b) is the correct option

    Related Questions to study

    General
    Maths-

    Statement 1:The numbers square root of 2 comma blank square root of 3 comma blank square root of 5 cannot be the terms of a single A.P. with non-zero common difference
    Statement 2:If p comma blank q comma blank r left parenthesis p not equal to q right parenthesis are terms (not necessarily consecutive) of an A.P., then there exists a rational number k such that left parenthesis r minus q right parenthesis divided by left parenthesis q minus p right parenthesis equals k

    Statement 1:The numbers square root of 2 comma blank square root of 3 comma blank square root of 5 cannot be the terms of a single A.P. with non-zero common difference
    Statement 2:If p comma blank q comma blank r left parenthesis p not equal to q right parenthesis are terms (not necessarily consecutive) of an A.P., then there exists a rational number k such that left parenthesis r minus q right parenthesis divided by left parenthesis q minus p right parenthesis equals k

    Maths-General
    General
    Maths-

    Statement 1:3, 6, 12 are in GP, then 9, 12, 18 are in HP.
    Statement 2:If middle term is added in three consecutive terms of a GP, resultant will be in HP.

    Statement 1:3, 6, 12 are in GP, then 9, 12, 18 are in HP.
    Statement 2:If middle term is added in three consecutive terms of a GP, resultant will be in HP.

    Maths-General
    General
    Maths-

    Statement 1:If sum of n terms of a series is 6 n to the power of 2 end exponent plus 3 n plus 1 then the series is in AP.
    Statement 2:Sum of n terms of an AP is always of the form a n to the power of 2 end exponent plus b n.

    Statement 1:If sum of n terms of a series is 6 n to the power of 2 end exponent plus 3 n plus 1 then the series is in AP.
    Statement 2:Sum of n terms of an AP is always of the form a n to the power of 2 end exponent plus b n.

    Maths-General
    parallel
    General
    Maths-

    Statement 1:If the arithmetic mean of two numbers is 5/2, geometric mean of the numbers is 2, then the harmonic mean will be 8/5
    Statement 2:For a group of positive numbers open parentheses G. M. close parentheses to the power of 2 end exponent equals open parentheses A. M. close parentheses cross times left parenthesis H. M. right parenthesis

    Statement 1:If the arithmetic mean of two numbers is 5/2, geometric mean of the numbers is 2, then the harmonic mean will be 8/5
    Statement 2:For a group of positive numbers open parentheses G. M. close parentheses to the power of 2 end exponent equals open parentheses A. M. close parentheses cross times left parenthesis H. M. right parenthesis

    Maths-General
    General
    Maths-

    Statement 1:The sum of n terms of two arithmetic progressions are in the ratio open parentheses 7 n plus 1 close parentheses colon open parentheses 4 n plus 17 close parentheses comma then the ratio of their nth terms is 7: 4.
    Statement 2:If S subscript n end subscript equals a x to the power of 2 end exponent plus b x plus c comma then T subscript n end subscript equals S subscript n end subscript minus S subscript n minus 1 end subscript

    Statement 1:The sum of n terms of two arithmetic progressions are in the ratio open parentheses 7 n plus 1 close parentheses colon open parentheses 4 n plus 17 close parentheses comma then the ratio of their nth terms is 7: 4.
    Statement 2:If S subscript n end subscript equals a x to the power of 2 end exponent plus b x plus c comma then T subscript n end subscript equals S subscript n end subscript minus S subscript n minus 1 end subscript

    Maths-General
    General
    Maths-

    Let a comma blank r element of R minus left curly bracket 0 comma blank 1 comma blank minus 1 right curly bracket and n be an even number
    Statement 1:a cross times a r cross times a r to the power of 2 end exponent midline horizontal ellipsis a r to the power of n minus 1 end exponent equals open parentheses a to the power of 2 end exponent r to the power of n minus 1 end exponent close parentheses to the power of n divided by 2 end exponent
    Statement 2:Product of i to the power of t h end exponent term from the beginning and from the end in a G.P. is independent of i

    Let a comma blank r element of R minus left curly bracket 0 comma blank 1 comma blank minus 1 right curly bracket and n be an even number
    Statement 1:a cross times a r cross times a r to the power of 2 end exponent midline horizontal ellipsis a r to the power of n minus 1 end exponent equals open parentheses a to the power of 2 end exponent r to the power of n minus 1 end exponent close parentheses to the power of n divided by 2 end exponent
    Statement 2:Product of i to the power of t h end exponent term from the beginning and from the end in a G.P. is independent of i

    Maths-General
    parallel
    General
    Maths-

    Statement 1:Let p subscript 1 end subscript comma p subscript 2 end subscript comma horizontal ellipsis comma p subscript n end subscript and x be distinct real number such that open parentheses not stretchy sum from r equals 1 to n minus 1 of p subscript r end subscript superscript 2 end superscript close parentheses x to the power of 2 end exponent plus 2 open parentheses not stretchy sum from r equals 1 to n minus 1 of p subscript r end subscript blank p subscript r plus 1 end subscript close parentheses x plus not stretchy sum from r equals 2 to n of p subscript r end subscript superscript 2 end superscript less or equal than 0, then p subscript 1 end subscript comma p subscript 2 end subscript comma horizontal ellipsis comma p subscript n end subscript are in G.P. and when a subscript 1 end subscript superscript 2 end superscript plus a subscript 2 end subscript superscript 2 end superscript plus a subscript 3 end subscript superscript 2 end superscript plus horizontal ellipsis plus a subscript n end subscript superscript 2 end superscript equals 0 comma blank a subscript 1 end subscript equals a subscript 2 end subscript equals a subscript 3 end subscript equals horizontal ellipsis equals a subscript n end subscript equals 0
    Statement 2:If fraction numerator p subscript 2 end subscript over denominator p subscript 1 end subscript end fraction equals fraction numerator p subscript 3 end subscript over denominator p subscript 2 end subscript end fraction equals horizontal ellipsis equals fraction numerator p subscript n end subscript over denominator p subscript n minus 1 end subscript end fraction, then p subscript 1 end subscript comma p subscript 2 end subscript comma horizontal ellipsis comma p subscript n end subscript are in G.P.

    Statement 1:Let p subscript 1 end subscript comma p subscript 2 end subscript comma horizontal ellipsis comma p subscript n end subscript and x be distinct real number such that open parentheses not stretchy sum from r equals 1 to n minus 1 of p subscript r end subscript superscript 2 end superscript close parentheses x to the power of 2 end exponent plus 2 open parentheses not stretchy sum from r equals 1 to n minus 1 of p subscript r end subscript blank p subscript r plus 1 end subscript close parentheses x plus not stretchy sum from r equals 2 to n of p subscript r end subscript superscript 2 end superscript less or equal than 0, then p subscript 1 end subscript comma p subscript 2 end subscript comma horizontal ellipsis comma p subscript n end subscript are in G.P. and when a subscript 1 end subscript superscript 2 end superscript plus a subscript 2 end subscript superscript 2 end superscript plus a subscript 3 end subscript superscript 2 end superscript plus horizontal ellipsis plus a subscript n end subscript superscript 2 end superscript equals 0 comma blank a subscript 1 end subscript equals a subscript 2 end subscript equals a subscript 3 end subscript equals horizontal ellipsis equals a subscript n end subscript equals 0
    Statement 2:If fraction numerator p subscript 2 end subscript over denominator p subscript 1 end subscript end fraction equals fraction numerator p subscript 3 end subscript over denominator p subscript 2 end subscript end fraction equals horizontal ellipsis equals fraction numerator p subscript n end subscript over denominator p subscript n minus 1 end subscript end fraction, then p subscript 1 end subscript comma p subscript 2 end subscript comma horizontal ellipsis comma p subscript n end subscript are in G.P.

    Maths-General
    General
    Maths-

    Statement 1:If 3 x plus 4 y equals 5 comma then the greatest value of x to the power of 2 end exponent y to the power of 3 end exponent is fraction numerator 3 over denominator 16 end fraction.
    Statement 2:Greatest value occurs when 9 x equals 8 y.

    Statement 1:If 3 x plus 4 y equals 5 comma then the greatest value of x to the power of 2 end exponent y to the power of 3 end exponent is fraction numerator 3 over denominator 16 end fraction.
    Statement 2:Greatest value occurs when 9 x equals 8 y.

    Maths-General
    General
    Maths-

    Statement 1:There are infinite geometric progressions for which 27, 8 and 12 are three of its terms (not necessarily consecutive)
    Statement 2:Given terms are integers

    Statement 1:There are infinite geometric progressions for which 27, 8 and 12 are three of its terms (not necessarily consecutive)
    Statement 2:Given terms are integers

    Maths-General
    parallel
    General
    Maths-

    Statement 1:Sum of the series 1 to the power of 3 end exponent minus 2 to the power of 3 end exponent plus 3 to the power of 3 end exponent minus 4 to the power of 3 end exponent plus horizontal ellipsis plus 11 to the power of 3 end exponent equals 378
    Statement 2:For any odd integer n greater or equal than 1 comma blank n to the power of 3 end exponent minus open parentheses n minus 1 close parentheses to the power of 3 end exponent plus horizontal ellipsis plus open parentheses negative 1 close parentheses to the power of n minus 1 end exponent blank 1 to the power of 3 end exponent equals fraction numerator 1 over denominator 4 end fraction open parentheses 2 n minus 1 close parentheses open parentheses n plus 1 close parentheses to the power of 2 end exponent

    Statement 1:Sum of the series 1 to the power of 3 end exponent minus 2 to the power of 3 end exponent plus 3 to the power of 3 end exponent minus 4 to the power of 3 end exponent plus horizontal ellipsis plus 11 to the power of 3 end exponent equals 378
    Statement 2:For any odd integer n greater or equal than 1 comma blank n to the power of 3 end exponent minus open parentheses n minus 1 close parentheses to the power of 3 end exponent plus horizontal ellipsis plus open parentheses negative 1 close parentheses to the power of n minus 1 end exponent blank 1 to the power of 3 end exponent equals fraction numerator 1 over denominator 4 end fraction open parentheses 2 n minus 1 close parentheses open parentheses n plus 1 close parentheses to the power of 2 end exponent

    Maths-General
    General
    Maths-

    Statement 1:In a G.P. if the open parentheses m plus n close parentheses to the power of t h end exponent term be p and open parentheses m minus n close parentheses to the power of t h end exponent term be q, then its m to the power of t h end exponent term is square root of p q end root
    Statement 2:T subscript m plus n end subscript comma blank T subscript m end subscript comma blank T subscript m minus n end subscript are in G.P.

    Statement 1:In a G.P. if the open parentheses m plus n close parentheses to the power of t h end exponent term be p and open parentheses m minus n close parentheses to the power of t h end exponent term be q, then its m to the power of t h end exponent term is square root of p q end root
    Statement 2:T subscript m plus n end subscript comma blank T subscript m end subscript comma blank T subscript m minus n end subscript are in G.P.

    Maths-General
    General
    Maths-

    Statement 1:If open vertical bar x minus 1 close vertical bar comma blank vertical line x minus 3 vertical line are first three terms of an AP, then its sixth term is 7< third terms.
    Statement 2:a comma blank a plus d comma blank a plus 2 d comma... are in AP open parentheses d not equal to 0 close parentheses comma then sixth term is open parentheses a plus 5 d close parentheses.

    Statement 1:If open vertical bar x minus 1 close vertical bar comma blank vertical line x minus 3 vertical line are first three terms of an AP, then its sixth term is 7< third terms.
    Statement 2:a comma blank a plus d comma blank a plus 2 d comma... are in AP open parentheses d not equal to 0 close parentheses comma then sixth term is open parentheses a plus 5 d close parentheses.

    Maths-General
    parallel
    General
    Maths-

    Statement 1:If sum f n terms of a series 2 n to the power of 2 end exponent plus 3 n plus 1 comma then series is an AP.
    Statement 2:Sum of n terms of an AP is always of the form p n to the power of 2 end exponent plus q n.

    Statement 1:If sum f n terms of a series 2 n to the power of 2 end exponent plus 3 n plus 1 comma then series is an AP.
    Statement 2:Sum of n terms of an AP is always of the form p n to the power of 2 end exponent plus q n.

    Maths-General
    General
    Maths-

    Let a comma blank b comma blank c be three positive real numbers which are in HP.
    Statement 1:fraction numerator a plus b over denominator 2 a minus b end fraction plus fraction numerator c plus b over denominator 2 c minus b end fraction greater or equal than 4.
    Statement 2:If x greater than 0 comma then x plus fraction numerator 1 over denominator x end fraction greater or equal than 4.

    Let a comma blank b comma blank c be three positive real numbers which are in HP.
    Statement 1:fraction numerator a plus b over denominator 2 a minus b end fraction plus fraction numerator c plus b over denominator 2 c minus b end fraction greater or equal than 4.
    Statement 2:If x greater than 0 comma then x plus fraction numerator 1 over denominator x end fraction greater or equal than 4.

    Maths-General
    General
    Maths-

    Statement 1:If x to the power of 2 end exponent plus 9 y to the power of 2 end exponent plus 25 z to the power of 2 end exponent equals x y z open parentheses fraction numerator 15 over denominator x end fraction plus fraction numerator 5 over denominator y end fraction plus fraction numerator 3 over denominator z end fraction close parentheses, then x comma blank y comma blank z are in H.P.
    Statement 2:If a subscript 1 end subscript superscript 2 end superscript plus a subscript 2 end subscript superscript 2 end superscript plus horizontal ellipsis plus a subscript n end subscript superscript 2 end superscript equals 0, then a subscript 1 end subscript equals a subscript 2 end subscript equals a subscript 3 end subscript equals horizontal ellipsis a subscript n end subscript equals 0

    Statement 1:If x to the power of 2 end exponent plus 9 y to the power of 2 end exponent plus 25 z to the power of 2 end exponent equals x y z open parentheses fraction numerator 15 over denominator x end fraction plus fraction numerator 5 over denominator y end fraction plus fraction numerator 3 over denominator z end fraction close parentheses, then x comma blank y comma blank z are in H.P.
    Statement 2:If a subscript 1 end subscript superscript 2 end superscript plus a subscript 2 end subscript superscript 2 end superscript plus horizontal ellipsis plus a subscript n end subscript superscript 2 end superscript equals 0, then a subscript 1 end subscript equals a subscript 2 end subscript equals a subscript 3 end subscript equals horizontal ellipsis a subscript n end subscript equals 0

    Maths-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.