Maths-
General
Easy

Question

Statement1: If a line intersects a hyperbola at (2, 6) and (4, 4) and one of the asymptotes at (1, 2) then the centre of the hyperbola is (1, 2) because
Statement2: Mid point of the chord intercepted by hyperbola is same as midpoint of the chord intercepted between
asymptotes

  1. Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement1    
  2. Statement-1 is True, Statement-2 is True; Statement-2 NOT a correct explanation for Statement1.    
  3. Statement1 is True, Statement-2 is False    
  4. Statement 1 is False, statement-2 is True    

The correct answer is: Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement1


    Statement 2: is correct
    fraction numerator h plus 1 over denominator 2 end fraction equals fraction numerator negative 2 plus 4 over denominator 2 end fraction comma fraction numerator k minus 2 over denominator 2 end fraction equals fraction numerator negative 6 plus 2 over denominator 2 end fraction (h, k) (1, 2)
    line intersects asymptote at one point only. Hence it is the centre of the hyperbola

    Related Questions to study

    General
    Maths-

    lf not stretchy integral subscript blank superscript blank left parenthesis blank s i n blank 2 x plus blank c o s blank 2 x right parenthesis d x equals fraction numerator 1 over denominator square root of 2 end fraction blank s i n blank left parenthesis 2 x minus c right parenthesis plus 0, then the value of a and c is

    lf not stretchy integral subscript blank superscript blank left parenthesis blank s i n blank 2 x plus blank c o s blank 2 x right parenthesis d x equals fraction numerator 1 over denominator square root of 2 end fraction blank s i n blank left parenthesis 2 x minus c right parenthesis plus 0, then the value of a and c is

    Maths-General
    General
    Maths-

    lf integral subscript blank superscript blank fraction numerator left parenthesis x squared minus 1 right parenthesis over denominator left parenthesis x to the power of 4 plus 3 x squared plus 1 right parenthesis t a n to the power of negative 1 end exponent left parenthesis fraction numerator x squared plus right square bracket over denominator chi end fraction right parenthesis end fraction d x equals k blank l o g blank vertical line t a n to the power of negative 1 end exponent fraction numerator x squared plus 1 over denominator chi end fraction vertical line plus c comma then k is equal to

    lf integral subscript blank superscript blank fraction numerator left parenthesis x squared minus 1 right parenthesis over denominator left parenthesis x to the power of 4 plus 3 x squared plus 1 right parenthesis t a n to the power of negative 1 end exponent left parenthesis fraction numerator x squared plus right square bracket over denominator chi end fraction right parenthesis end fraction d x equals k blank l o g blank vertical line t a n to the power of negative 1 end exponent fraction numerator x squared plus 1 over denominator chi end fraction vertical line plus c comma then k is equal to

    Maths-General
    General
    Maths-

    lf integral subscript blank superscript blank fraction numerator d x over denominator chi square root of 1 minus x cubed end root end fraction equals a blank l o g blank vertical line fraction numerator square root of 1 minus x cubed end root minus 1 over denominator square root of 1 minus x cubed end root plus 1 end fraction vertical line plus c, then

    lf integral subscript blank superscript blank fraction numerator d x over denominator chi square root of 1 minus x cubed end root end fraction equals a blank l o g blank vertical line fraction numerator square root of 1 minus x cubed end root minus 1 over denominator square root of 1 minus x cubed end root plus 1 end fraction vertical line plus c, then

    Maths-General
    parallel
    General
    Maths-

    The gradient of the curve y=f(x) at P is slope of the tangent line at P i.e.,

    PM = length of the tangent
    PR = length of the normal to the curve y=f(x)
    Area of triangle formed by the positive x-axis and the normal and the tangent to x to the power of 2 end exponent plus y to the power of 2 end exponent equals 4 at left parenthesis 1 comma square root of 3 right parenthesis is

    The gradient of the curve y=f(x) at P is slope of the tangent line at P i.e.,

    PM = length of the tangent
    PR = length of the normal to the curve y=f(x)
    Area of triangle formed by the positive x-axis and the normal and the tangent to x to the power of 2 end exponent plus y to the power of 2 end exponent equals 4 at left parenthesis 1 comma square root of 3 right parenthesis is

    Maths-General
    General
    Chemistry-

    The partial pressures of CH30H, CO and H2 in the equilibrium mixture for the reaction, C O plus 2 H subscript 2 end subscript rightwards harpoon over leftwards harpoon C H subscript 3 end subscript O H at 427degreeC are 2.0, 1.0 and 0.1 atm respectively The value of Kp for the decomposition of CH30H into CO and H2 is:

    The partial pressures of CH30H, CO and H2 in the equilibrium mixture for the reaction, C O plus 2 H subscript 2 end subscript rightwards harpoon over leftwards harpoon C H subscript 3 end subscript O H at 427degreeC are 2.0, 1.0 and 0.1 atm respectively The value of Kp for the decomposition of CH30H into CO and H2 is:

    Chemistry-General
    General
    Chemistry-

    At 500 K, the equilibrium constant for reaction c is C subscript 2 end subscript H subscript 2 end subscript C l subscript 2 end subscript rightwards harpoon over leftwards harpoon text  trans-  end text C subscript 2 end subscript H subscript 2 end subscript C l subscript 2 end subscript 0.6At the same temperature, the equilibrium constant for the reaction  C subscript 2 end subscript H subscript 2 end subscript C l subscript 2 end subscript rightwards harpoon over leftwards harpoon text  trans-  end text C subscript 2 end subscript H subscript 2 end subscript C l subscript 2 end subscript, will be:

    At 500 K, the equilibrium constant for reaction c is C subscript 2 end subscript H subscript 2 end subscript C l subscript 2 end subscript rightwards harpoon over leftwards harpoon text  trans-  end text C subscript 2 end subscript H subscript 2 end subscript C l subscript 2 end subscript 0.6At the same temperature, the equilibrium constant for the reaction  C subscript 2 end subscript H subscript 2 end subscript C l subscript 2 end subscript rightwards harpoon over leftwards harpoon text  trans-  end text C subscript 2 end subscript H subscript 2 end subscript C l subscript 2 end subscript, will be:

    Chemistry-General
    parallel
    General
    Chemistry-

    For the reaction,blank 2 N O subscript 2 end subscript left parenthesis g right parenthesis rightwards harpoon over leftwards harpoon 2 N O left parenthesis g right parenthesis plus O subscript 2 end subscript left parenthesis g right parenthesis K subscript c end subscript equals 1.8 cross times 10 to the power of negative 6 end exponentKC 1.8 cross times 10-6 at 185degreeC The value of Kc at 185degreeC for the reaction; N O subscript 2 end subscript left parenthesis g right parenthesis rightwards harpoon over leftwards harpoon fraction numerator 1 over denominator 2 end fraction N subscript 2 end subscript left parenthesis g right parenthesis plus O subscript 2 end subscript left parenthesis g right parenthesis

    For the reaction,blank 2 N O subscript 2 end subscript left parenthesis g right parenthesis rightwards harpoon over leftwards harpoon 2 N O left parenthesis g right parenthesis plus O subscript 2 end subscript left parenthesis g right parenthesis K subscript c end subscript equals 1.8 cross times 10 to the power of negative 6 end exponentKC 1.8 cross times 10-6 at 185degreeC The value of Kc at 185degreeC for the reaction; N O subscript 2 end subscript left parenthesis g right parenthesis rightwards harpoon over leftwards harpoon fraction numerator 1 over denominator 2 end fraction N subscript 2 end subscript left parenthesis g right parenthesis plus O subscript 2 end subscript left parenthesis g right parenthesis

    Chemistry-General
    General
    Maths-

    In a geometric progression, if the ratio of the sum of first 5 terms to the sum of their reciprocals is 49, and the sum of the first and third terms is 35, then the first term of this geometric progression is

    In a geometric progression, if the ratio of the sum of first 5 terms to the sum of their reciprocals is 49, and the sum of the first and third terms is 35, then the first term of this geometric progression is

    Maths-General
    General
    Maths-

    Statements-1: stretchy integral subscript 0 end subscript superscript n x plus t end superscript   vertical line s i n invisible function application x vertical line d x= (2n + (a) cost (0 ttheta)
    Statements-2: stretchy integral subscript a end subscript superscript b end superscript   f left parenthesis x right parenthesis d x equals stretchy integral subscript a end subscript superscript c end superscript   f left parenthesis x right parenthesis d x plus stretchy integral subscript c end subscript superscript b end superscript   f left parenthesis x right parenthesis d x
    and stretchy integral subscript 0 end subscript superscript m end superscript   f left parenthesis x right parenthesis d x equals n stretchy integral subscript 0 end subscript superscript a end superscript   f left parenthesis x right parenthesis d x if f(a + x) = f(x)

    Statements-1: stretchy integral subscript 0 end subscript superscript n x plus t end superscript   vertical line s i n invisible function application x vertical line d x= (2n + (a) cost (0 ttheta)
    Statements-2: stretchy integral subscript a end subscript superscript b end superscript   f left parenthesis x right parenthesis d x equals stretchy integral subscript a end subscript superscript c end superscript   f left parenthesis x right parenthesis d x plus stretchy integral subscript c end subscript superscript b end superscript   f left parenthesis x right parenthesis d x
    and stretchy integral subscript 0 end subscript superscript m end superscript   f left parenthesis x right parenthesis d x equals n stretchy integral subscript 0 end subscript superscript a end superscript   f left parenthesis x right parenthesis d x if f(a + x) = f(x)

    Maths-General
    parallel
    General
    Maths-

    If x enotes the rounded off value of x left parenthesis 3.4 equals 3 comma 3.5 equals 4 comma 3.8 equals text  4etc  end text right parenthesis and the area bounded by the two curves defined by y = vertical line x minus x with not stretchy bar on top vertical line and y equals lambda sin invisible function application left parenthesis pi x right parenthesis comma lambda 1. In the interval 0 x 1 is equal to 2 square units, The value of the constant is

    If x enotes the rounded off value of x left parenthesis 3.4 equals 3 comma 3.5 equals 4 comma 3.8 equals text  4etc  end text right parenthesis and the area bounded by the two curves defined by y = vertical line x minus x with not stretchy bar on top vertical line and y equals lambda sin invisible function application left parenthesis pi x right parenthesis comma lambda 1. In the interval 0 x 1 is equal to 2 square units, The value of the constant is

    Maths-General
    General
    Maths-

    Statement-1: f colon R rightwards arrow R comma f left parenthesis x right parenthesis equals s i n invisible function application x plus xthen stretchy integral subscript 0 end subscript superscript pi end superscript   open parentheses f to the power of negative 1 end exponent left parenthesis x right parenthesis close parentheses d x equals fraction numerator pi to the power of 2 end exponent minus 4 over denominator 2 end fraction
    Statement-2 : y equals f to the power of negative 1 end exponent left parenthesis x right parenthesisis the reflection of y equals f left parenthesis x right parenthesis text  w.r.t.  end text to the power of ´ end exponent x to the power of ´ end exponent

    Statement-1: f colon R rightwards arrow R comma f left parenthesis x right parenthesis equals s i n invisible function application x plus xthen stretchy integral subscript 0 end subscript superscript pi end superscript   open parentheses f to the power of negative 1 end exponent left parenthesis x right parenthesis close parentheses d x equals fraction numerator pi to the power of 2 end exponent minus 4 over denominator 2 end fraction
    Statement-2 : y equals f to the power of negative 1 end exponent left parenthesis x right parenthesisis the reflection of y equals f left parenthesis x right parenthesis text  w.r.t.  end text to the power of ´ end exponent x to the power of ´ end exponent

    Maths-General
    General
    Maths-

    If stretchy integral subscript 0 end subscript superscript 1 end superscript   t a n to the power of negative 1 end exponent invisible function application x d x equals fraction numerator pi over denominator 4 end fraction minus fraction numerator 1 over denominator 2 end fraction ln 2 then the value of the definite integral stretchy integral subscript 0 end subscript superscript 1 end superscript   t a n to the power of negative 1 end exponent invisible function application open parentheses 1 minus x plus x to the power of 2 end exponent close parentheses d x equals

    If stretchy integral subscript 0 end subscript superscript 1 end superscript   t a n to the power of negative 1 end exponent invisible function application x d x equals fraction numerator pi over denominator 4 end fraction minus fraction numerator 1 over denominator 2 end fraction ln 2 then the value of the definite integral stretchy integral subscript 0 end subscript superscript 1 end superscript   t a n to the power of negative 1 end exponent invisible function application open parentheses 1 minus x plus x to the power of 2 end exponent close parentheses d x equals

    Maths-General
    parallel
    General
    Maths-

    Let the unit vectors a with not stretchy rightwards arrow on top and b with not stretchy rightwards arrow on top be perpendicular and the unit vector Error converting from MathML to accessible text. be inclined at an angle θ to both a with not stretchy rightwards arrow on top and straight b with rightwards arrow on top Ifstraight c with rightwards arrow on top equals alpha straight a with rightwards arrow on top plus beta straight b with rightwards arrow on top plus gamma left parenthesis straight a with rightwards arrow on top cross times straight b with rightwards arrow on top right parenthesis  then

    We should know how to take dot product of two vectors.

    Let the unit vectors a with not stretchy rightwards arrow on top and b with not stretchy rightwards arrow on top be perpendicular and the unit vector Error converting from MathML to accessible text. be inclined at an angle θ to both a with not stretchy rightwards arrow on top and straight b with rightwards arrow on top Ifstraight c with rightwards arrow on top equals alpha straight a with rightwards arrow on top plus beta straight b with rightwards arrow on top plus gamma left parenthesis straight a with rightwards arrow on top cross times straight b with rightwards arrow on top right parenthesis  then

    Maths-General

    We should know how to take dot product of two vectors.

    General
    Maths-

    A random variable X has the probability distribution

    For the events E equals left curly bracket Xis prime number} and F equals left curly bracket X less than 4 right curly bracket, the probability of P left parenthesis E union F right parenthesis is

    A random variable X has the probability distribution

    For the events E equals left curly bracket Xis prime number} and F equals left curly bracket X less than 4 right curly bracket, the probability of P left parenthesis E union F right parenthesis is

    Maths-General
    General
    Physics-

    Three long, straight and parallel wires carrying currents are arranged as shown in the figure. The wire C which carries a current of 5.0 amp is so placed that it experiences no force. The distance of wire C from wire D is then

    Three long, straight and parallel wires carrying currents are arranged as shown in the figure. The wire C which carries a current of 5.0 amp is so placed that it experiences no force. The distance of wire C from wire D is then

    Physics-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.