Maths-
General
Easy

Question

The coefficient of t to the power of 24 end exponent in the expansion of open parentheses 1 plus t to the power of 2 end exponent close parentheses to the power of 12 end exponent open parentheses 1 plus t to the power of 12 end exponent close parentheses left parenthesis 1 plus t to the power of 24 end exponent right parenthesis is

  1. blank to the power of 12 end exponent C subscript 6 end subscript plus 2    
  2. blank to the power of 12 end exponent C subscript 5 end subscript    
  3. blank to the power of 12 end exponent C subscript 6 end subscript    
  4. blank to the power of 12 end exponent C subscript 7 end subscript    

The correct answer is: blank to the power of 12 end exponent C subscript 6 end subscript plus 2


    We have, open parentheses 1 plus t to the power of 2 end exponent close parentheses to the power of 12 end exponent open parentheses 1 plus t to the power of 12 end exponent close parentheses left parenthesis 1 plus t to the power of 24 end exponent right parenthesis
    equals open parentheses 1 plus blank to the power of 12 end exponent C subscript 1 end subscript t to the power of 2 end exponent plus blank to the power of 12 end exponent C subscript 2 end subscript t to the power of 4 end exponent plus... plus blank to the power of 12 end exponent C subscript 6 end subscript t to the power of 12 end exponent plus... plus blank to the power of 12 end exponent C subscript 12 end subscript t to the power of 24 end exponent plus... close parentheses left parenthesis 1 plus t to the power of 12 end exponent plus t to the power of 24 end exponent plus t to the power of 36 end exponent right parenthesis
    therefore C o e f f i c i e n t blank o f blank t to the power of 24 end exponent blank i n blank open parentheses 1 plus t to the power of 2 end exponent close parentheses to the power of 12 end exponent open parentheses 1 plus t to the power of 12 end exponent close parentheses left parenthesis 1 plus t to the power of 24 end exponent right parenthesis
    equals blank to the power of 12 end exponent C subscript 6 end subscript plus blank to the power of 12 end exponent C subscript 12 end subscript plus 1 equals blank to the power of 12 end exponent C subscript 6 end subscript plus 2

    Related Questions to study

    General
    Maths-

    The coefficient of x to the power of 5 end exponent in the expansion of open parentheses 1 plus x to the power of 2 end exponent close parentheses to the power of 5 end exponent open parentheses 1 plus x close parentheses to the power of 4 end exponent is

    The coefficient of x to the power of 5 end exponent in the expansion of open parentheses 1 plus x to the power of 2 end exponent close parentheses to the power of 5 end exponent open parentheses 1 plus x close parentheses to the power of 4 end exponent is

    Maths-General
    General
    Maths-

    Let R equals left parenthesis 2 plus square root of 3 right parenthesis to the power of 2 n end exponent and f equals R minus left square bracket R right square bracket where left square bracket bullet right square bracket denotes the greatest integer function, then R open parentheses 1 minus f close parentheses is equal to

    Let R equals left parenthesis 2 plus square root of 3 right parenthesis to the power of 2 n end exponent and f equals R minus left square bracket R right square bracket where left square bracket bullet right square bracket denotes the greatest integer function, then R open parentheses 1 minus f close parentheses is equal to

    Maths-General
    General
    Maths-

    If left parenthesis 1 plus x plus x to the power of 2 end exponent right parenthesis to the power of n end exponent equals not stretchy sum from r equals 0 to 2 n of a subscript r end subscript x to the power of r end exponent comma blank t h e n blank a subscript 1 end subscript minus 2 a subscript 2 end subscript plus 3 a subscript 3 end subscript horizontal ellipsis minus 2 n a subscript 2 n end subscript is equal to

    If left parenthesis 1 plus x plus x to the power of 2 end exponent right parenthesis to the power of n end exponent equals not stretchy sum from r equals 0 to 2 n of a subscript r end subscript x to the power of r end exponent comma blank t h e n blank a subscript 1 end subscript minus 2 a subscript 2 end subscript plus 3 a subscript 3 end subscript horizontal ellipsis minus 2 n a subscript 2 n end subscript is equal to

    Maths-General
    parallel
    General
    Maths-

    Let open square brackets x close square brackets denote the greatest integer less than or equal to x. If x equals open parentheses square root of 3 plus 1 close parentheses to the power of 5 end exponent, then open square brackets x close square brackets is equal to

    Let open square brackets x close square brackets denote the greatest integer less than or equal to x. If x equals open parentheses square root of 3 plus 1 close parentheses to the power of 5 end exponent, then open square brackets x close square brackets is equal to

    Maths-General
    General
    Maths-

    left parenthesis 2 to the power of 3 n end exponent minus 1 right parenthesis will be divisible by left parenthesis for all n element of N right parenthesis

    left parenthesis 2 to the power of 3 n end exponent minus 1 right parenthesis will be divisible by left parenthesis for all n element of N right parenthesis

    Maths-General
    General
    Maths-

    The coefficient of x to the power of 3 end exponent y to the power of 4 end exponent z to the power of 5 end exponent in the expansion of left parenthesis x y plus y z plus x z right parenthesis to the power of 6 end exponent is

    The coefficient of x to the power of 3 end exponent y to the power of 4 end exponent z to the power of 5 end exponent in the expansion of left parenthesis x y plus y z plus x z right parenthesis to the power of 6 end exponent is

    Maths-General
    parallel
    General
    Maths-

    Let C subscript 1 end subscript comma blank C subscript 2 end subscript comma blank C subscript 3 end subscript are the usual binomial coefficients. Let S equals C subscript 1 end subscript plus 2 C subscript 2 end subscript plus 3 C subscript 3 end subscript plus... plus n C subscript n end subscript, then S equals

    Let C subscript 1 end subscript comma blank C subscript 2 end subscript comma blank C subscript 3 end subscript are the usual binomial coefficients. Let S equals C subscript 1 end subscript plus 2 C subscript 2 end subscript plus 3 C subscript 3 end subscript plus... plus n C subscript n end subscript, then S equals

    Maths-General
    General
    Maths-

    The coefficient of x in the expansion of open parentheses 1 plus x close parentheses open parentheses 1 plus 2 x close parentheses open parentheses 1 plus 3 x close parentheses horizontal ellipsis horizontal ellipsis left parenthesis 1 plus 100 x right parenthesis is

    The coefficient of x in the expansion of open parentheses 1 plus x close parentheses open parentheses 1 plus 2 x close parentheses open parentheses 1 plus 3 x close parentheses horizontal ellipsis horizontal ellipsis left parenthesis 1 plus 100 x right parenthesis is

    Maths-General
    General
    Maths-

    I f blank open vertical bar x close vertical bar less than fraction numerator 1 over denominator 2 end fraction comma blank t h e n blank t h e blank c o e f f i c i e n t blank o f blank x to the power of r end exponent blank i n blank t h e blank e x p a n s i o n blank o f fraction numerator 1 plus 2 x over denominator left parenthesis 1 minus 2 x right parenthesis to the power of 2 end exponent end fraction comma blank i s

    I f blank open vertical bar x close vertical bar less than fraction numerator 1 over denominator 2 end fraction comma blank t h e n blank t h e blank c o e f f i c i e n t blank o f blank x to the power of r end exponent blank i n blank t h e blank e x p a n s i o n blank o f fraction numerator 1 plus 2 x over denominator left parenthesis 1 minus 2 x right parenthesis to the power of 2 end exponent end fraction comma blank i s

    Maths-General
    parallel
    General
    Maths-

    In the expansion of left parenthesis 1 plus x plus x to the power of 2 end exponent plus x to the power of 3 end exponent right parenthesis to the power of 6 end exponent comma then coefficient of x to the power of 14 end exponent is

    In the expansion of left parenthesis 1 plus x plus x to the power of 2 end exponent plus x to the power of 3 end exponent right parenthesis to the power of 6 end exponent comma then coefficient of x to the power of 14 end exponent is

    Maths-General
    General
    Physics-

    A person can see clearly only upto 3m. What will be power of his spectacles lens, so that he can see clearly upto 12 m

    A person can see clearly only upto 3m. What will be power of his spectacles lens, so that he can see clearly upto 12 m

    Physics-General
    General
    Physics-

    The least distance of distinct vision for young adult with normal vision is about

    The least distance of distinct vision for young adult with normal vision is about

    Physics-General
    parallel
    General
    Physics-

    A concave lens has a focal length of 20 cm. The power of lens will be

    A concave lens has a focal length of 20 cm. The power of lens will be

    Physics-General
    General
    Physics-

    The principle axis is also called ……………..of the lens.

    The principle axis is also called ……………..of the lens.

    Physics-General
    General
    Physics-

    A convex lens is also called a

    A convex lens is also called a

    Physics-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.