Maths-
General
Easy
Question
The condition for the expression ax2 + 2hxy + by2 + 2gx + 2fy + c to be resolved into rational linear factors in the determinant form is -
= 0
= 0
= 0
- None of these
The correct answer is:
= 0
Step by step solution:
The condition for the expression ax2 + 2hxy + by2 + 2gx + 2fy + c to be resolved into rational linear factors in the determinant form is:
![open vertical bar table row a h g row h b f row g f c end table close vertical bar equals 0]()
Hence, option(d) is the correct option.
Related Questions to study
Maths-
If
= ax5 + bx4 + cx3 + dx2 +
x +
be an identity in x, where a, b, c, d,
,
are independent of x. Then the value of
is
If
= ax5 + bx4 + cx3 + dx2 +
x +
be an identity in x, where a, b, c, d,
,
are independent of x. Then the value of
is
Maths-General
Maths-
If the following equations x + y – 3 = 0(1 +
) x + (2 +
) y – 8 = 0x – (1 +
) y + (2 +
) = 0 are consistent then the value of
is
If the following equations x + y – 3 = 0(1 +
) x + (2 +
) y – 8 = 0x – (1 +
) y + (2 +
) = 0 are consistent then the value of
is
Maths-General
Maths-
If
are the roots of x3 – 3x + 2 = 0, then the value of the determinant
is equal to
If
are the roots of x3 – 3x + 2 = 0, then the value of the determinant
is equal to
Maths-General
Maths-
If
ABC is a scalene triangle, then the value of
is
If
ABC is a scalene triangle, then the value of
is
Maths-General
Maths-
Consider the system of equations-x – 2y + 3z = –1–x + y – 2z = k x – 3y + 4z = 1
STATEMENT-1: The system of equations has no solution for k
3
STATEMENT-2: The determinant ![open vertical bar table row 1 3 cell negative 1 end cell row cell negative 1 end cell cell negative 2 end cell k row 1 4 1 end table close vertical bar]()
0, for k
3
Consider the system of equations-x – 2y + 3z = –1–x + y – 2z = k x – 3y + 4z = 1
STATEMENT-1: The system of equations has no solution for k
3
STATEMENT-2: The determinant ![open vertical bar table row 1 3 cell negative 1 end cell row cell negative 1 end cell cell negative 2 end cell k row 1 4 1 end table close vertical bar]()
0, for k
3
Maths-General
Maths-
Suppose, x > 0, y > 0, z > 0 and
(a, b, c) = ![open vertical bar table row cell x log invisible function application 2 end cell 3 cell 15 plus log invisible function application left parenthesis a to the power of x end exponent right parenthesis end cell row cell y log invisible function application 3 end cell 5 cell 25 plus log invisible function application left parenthesis b to the power of y end exponent right parenthesis end cell row cell z log invisible function application 5 end cell 7 cell 35 plus log invisible function application left parenthesis c to the power of z end exponent right parenthesis end cell end table close vertical bar]()
Statement - 1 :
(8, 27, 125) = 0
Statement - 2 :
= 0
Suppose, x > 0, y > 0, z > 0 and
(a, b, c) = ![open vertical bar table row cell x log invisible function application 2 end cell 3 cell 15 plus log invisible function application left parenthesis a to the power of x end exponent right parenthesis end cell row cell y log invisible function application 3 end cell 5 cell 25 plus log invisible function application left parenthesis b to the power of y end exponent right parenthesis end cell row cell z log invisible function application 5 end cell 7 cell 35 plus log invisible function application left parenthesis c to the power of z end exponent right parenthesis end cell end table close vertical bar]()
Statement - 1 :
(8, 27, 125) = 0
Statement - 2 :
= 0
Maths-General
Maths-
If
and
then y=
If
and
then y=
Maths-General
Maths-
If
then ![t a n cubed space left parenthesis pi divided by 4 plus theta right parenthesis plus t a n cubed space left parenthesis pi divided by 4 minus theta right parenthesis equals]()
If
then ![t a n cubed space left parenthesis pi divided by 4 plus theta right parenthesis plus t a n cubed space left parenthesis pi divided by 4 minus theta right parenthesis equals]()
Maths-General
Maths-
then ![s i n squared space left parenthesis alpha minus beta right parenthesis plus 2 a b c o s space left parenthesis alpha minus beta right parenthesis equals]()
then ![s i n squared space left parenthesis alpha minus beta right parenthesis plus 2 a b c o s space left parenthesis alpha minus beta right parenthesis equals]()
Maths-General
Maths-
if ![fraction numerator cos space x minus cos space alpha over denominator cos space x minus cos space beta end fraction equals fraction numerator sin squared begin display style space end style alpha cos space beta over denominator sin squared begin display style space end style beta cos space alpha end fraction text then end text cos text end text x equals]()
if ![fraction numerator cos space x minus cos space alpha over denominator cos space x minus cos space beta end fraction equals fraction numerator sin squared begin display style space end style alpha cos space beta over denominator sin squared begin display style space end style beta cos space alpha end fraction text then end text cos text end text x equals]()
Maths-General
Maths-
Assertion:
is independent of ![theta]()
Reason: If f(
) = c, then f(
) is independent of
.
Assertion:
is independent of ![theta]()
Reason: If f(
) = c, then f(
) is independent of
.
Maths-General
Maths-
Statement-1 : The function f(x) = |x3| is differentiable at x = 0
Statement-2 : at x = 0,
(x) = 0
Statement-1 : The function f(x) = |x3| is differentiable at x = 0
Statement-2 : at x = 0,
(x) = 0
Maths-General
Maths-
Statement-1 : The function y = sin–1 (cos x) is not differentiable at
is particular at x = ![pi]()
Statement-2 :
=
so the function is not differentiable at the points where sin x = 0.
Statement-1 : The function y = sin–1 (cos x) is not differentiable at
is particular at x = ![pi]()
Statement-2 :
=
so the function is not differentiable at the points where sin x = 0.
Maths-General
Maths-
Statement-1 : f
is differentiable for all real values of x (n
2)
Statement-2 : For n
2, Right derivative = Left derivative (for all real values of x)
Statement-1 : f
is differentiable for all real values of x (n
2)
Statement-2 : For n
2, Right derivative = Left derivative (for all real values of x)
Maths-General
Maths-
Statement-1 : f(x) = cos2x + cos3
– cos x cos3
Then f‘(x) = 0
Statement-2 : Derivative of constant function is zero
Statement-1 : f(x) = cos2x + cos3
– cos x cos3
Then f‘(x) = 0
Statement-2 : Derivative of constant function is zero
Maths-General