Maths-
General
Easy

Question

If fraction numerator cos space x over denominator cos space y end fraction equals 2 and cos space left parenthesis x minus y right parenthesis equals fraction numerator square root of 3 over denominator 2 end fraction then y=

  1. square root of 3 plus 4
  2. square root of 3 plus 1
  3. square root of 3 minus 4
  4. square root of 3 minus 1

The correct answer is: square root of 3 minus 4


    table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell space of 1em cos invisible function application left parenthesis x minus y right parenthesis equals fraction numerator square root of 3 over denominator 2 end fraction not stretchy rightwards double arrow x minus y equals pi over 6 end cell row cell not stretchy rightwards double arrow x equals pi over 6 plus y therefore cos invisible function application x equals 2 cos invisible function application y end cell row cell not stretchy rightwards double arrow fraction numerator square root of 3 over denominator 2 end fraction cos invisible function application y minus 1 half sin invisible function application y equals 2 cos invisible function application y end cell row cell not stretchy rightwards double arrow open parentheses fraction numerator square root of 3 minus 4 over denominator 2 end fraction close parentheses cos invisible function application y equals 1 half sin invisible function application y not stretchy rightwards double arrow tan invisible function application y equals square root of 3 minus 4 end cell end table

    Related Questions to study

    General
    Maths-

    If tan space left parenthesis pi divided by 4 plus theta right parenthesis plus tan space left parenthesis pi divided by 4 minus theta right parenthesis equals a then t a n cubed space left parenthesis pi divided by 4 plus theta right parenthesis plus t a n cubed space left parenthesis pi divided by 4 minus theta right parenthesis equals

    If tan space left parenthesis pi divided by 4 plus theta right parenthesis plus tan space left parenthesis pi divided by 4 minus theta right parenthesis equals a then t a n cubed space left parenthesis pi divided by 4 plus theta right parenthesis plus t a n cubed space left parenthesis pi divided by 4 minus theta right parenthesis equals

    Maths-General
    General
    Maths-

    text  If  end text cos left parenthesis theta minus alpha right parenthesis equals a times cos space left parenthesis theta minus beta right parenthesis equals b then s i n squared space left parenthesis alpha minus beta right parenthesis plus 2 a b c o s space left parenthesis alpha minus beta right parenthesis equals

    text  If  end text cos left parenthesis theta minus alpha right parenthesis equals a times cos space left parenthesis theta minus beta right parenthesis equals b then s i n squared space left parenthesis alpha minus beta right parenthesis plus 2 a b c o s space left parenthesis alpha minus beta right parenthesis equals

    Maths-General
    General
    Maths-

    if fraction numerator cos space x minus cos space alpha over denominator cos space x minus cos space beta end fraction equals fraction numerator sin squared begin display style space end style alpha cos space beta over denominator sin squared begin display style space end style beta cos space alpha end fraction text  then  end text cos text end text x equals

    if fraction numerator cos space x minus cos space alpha over denominator cos space x minus cos space beta end fraction equals fraction numerator sin squared begin display style space end style alpha cos space beta over denominator sin squared begin display style space end style beta cos space alpha end fraction text  then  end text cos text end text x equals

    Maths-General
    parallel
    General
    Maths-

    Assertion: open vertical bar table row cell cos invisible function application left parenthesis theta plus alpha right parenthesis end cell cell cos invisible function application left parenthesis theta plus beta right parenthesis end cell cell cos invisible function application left parenthesis theta plus gamma right parenthesis end cell row cell sin invisible function application left parenthesis theta plus alpha right parenthesis end cell cell sin invisible function application left parenthesis theta plus beta right parenthesis end cell cell sin invisible function application left parenthesis theta plus gamma right parenthesis end cell row cell sin invisible function application left parenthesis beta minus gamma right parenthesis end cell cell sin invisible function application left parenthesis gamma minus alpha right parenthesis end cell cell sin invisible function application left parenthesis alpha minus beta right parenthesis end cell end table close vertical baris independent of theta
    Reason: If f(theta) = c, then f(theta) is independent of theta.

    Assertion: open vertical bar table row cell cos invisible function application left parenthesis theta plus alpha right parenthesis end cell cell cos invisible function application left parenthesis theta plus beta right parenthesis end cell cell cos invisible function application left parenthesis theta plus gamma right parenthesis end cell row cell sin invisible function application left parenthesis theta plus alpha right parenthesis end cell cell sin invisible function application left parenthesis theta plus beta right parenthesis end cell cell sin invisible function application left parenthesis theta plus gamma right parenthesis end cell row cell sin invisible function application left parenthesis beta minus gamma right parenthesis end cell cell sin invisible function application left parenthesis gamma minus alpha right parenthesis end cell cell sin invisible function application left parenthesis alpha minus beta right parenthesis end cell end table close vertical baris independent of theta
    Reason: If f(theta) = c, then f(theta) is independent of theta.

    Maths-General
    General
    Maths-

    Statement-1 : The function f(x) = |x3| is differentiable at x = 0
    Statement-2 : at x = 0, f to the power of straight prime(x) = 0

    Statement-1 : The function f(x) = |x3| is differentiable at x = 0
    Statement-2 : at x = 0, f to the power of straight prime(x) = 0

    Maths-General
    General
    Maths-

    Statement-1 : The function y = sin–1 (cos x) is not differentiable at x equals n pi comma n element of Z is particular at x = pi

    Statement-2 : fraction numerator d y over denominator d x end fraction=fraction numerator negative sin invisible function application x over denominator vertical line sin invisible function application x vertical line end fraction so the function is not differentiable at the points where sin x = 0.

    Statement-1 : The function y = sin–1 (cos x) is not differentiable at x equals n pi comma n element of Z is particular at x = pi

    Statement-2 : fraction numerator d y over denominator d x end fraction=fraction numerator negative sin invisible function application x over denominator vertical line sin invisible function application x vertical line end fraction so the function is not differentiable at the points where sin x = 0.

    Maths-General
    parallel
    General
    Maths-

    Statement-1 : fleft parenthesis x right parenthesis equals x to the power of n end exponent s i n invisible function application open parentheses fraction numerator 1 over denominator x end fraction close parentheses semicolon x not equal to 0 equals 0 semicolon x equals 0 is differentiable for all real values of x (n greater or equal than2)
    Statement-2 : For n greater or equal than 2, Right derivative = Left derivative (for all real values of x)

    Statement-1 : fleft parenthesis x right parenthesis equals x to the power of n end exponent s i n invisible function application open parentheses fraction numerator 1 over denominator x end fraction close parentheses semicolon x not equal to 0 equals 0 semicolon x equals 0 is differentiable for all real values of x (n greater or equal than2)
    Statement-2 : For n greater or equal than 2, Right derivative = Left derivative (for all real values of x)

    Maths-General
    General
    Maths-

    Statement-1 : f(x) = cos2x + cos3 open parentheses x plus fraction numerator pi over denominator 3 end fraction close parentheses– cos x cos3 open parentheses x plus fraction numerator pi over denominator 3 end fraction close parenthesesThen f‘(x) = 0
    Statement-2 : Derivative of constant function is zero

    Statement-1 : f(x) = cos2x + cos3 open parentheses x plus fraction numerator pi over denominator 3 end fraction close parentheses– cos x cos3 open parentheses x plus fraction numerator pi over denominator 3 end fraction close parenthesesThen f‘(x) = 0
    Statement-2 : Derivative of constant function is zero

    Maths-General
    General
    Maths-

    Let f and g be real valued functions defined on interval (–1, 1) such that g to the power of ′′ left parenthesis x right parenthesis text  is continuous,  end text g left parenthesis 0 right parenthesis not equal to 0. g to the power of straight prime left parenthesis 0 right parenthesis equals 0 comma g to the power of ′′ left parenthesis 0 right parenthesis not equal to 0 comma straight & f left parenthesis x right parenthesis equals g(x)sin x
    Statement-1 : stack l i m with x rightwards arrow 0 below [g(x) cot x –g(0) cosec x] =f to the power of ′′ (0)
    Statement-2 : f to the power of straight prime(0) = g (0)

    Let f and g be real valued functions defined on interval (–1, 1) such that g to the power of ′′ left parenthesis x right parenthesis text  is continuous,  end text g left parenthesis 0 right parenthesis not equal to 0. g to the power of straight prime left parenthesis 0 right parenthesis equals 0 comma g to the power of ′′ left parenthesis 0 right parenthesis not equal to 0 comma straight & f left parenthesis x right parenthesis equals g(x)sin x
    Statement-1 : stack l i m with x rightwards arrow 0 below [g(x) cot x –g(0) cosec x] =f to the power of ′′ (0)
    Statement-2 : f to the power of straight prime(0) = g (0)

    Maths-General
    parallel
    General
    Maths-

    Statement-1 : If f(x) =fraction numerator left parenthesis e to the power of k x end exponent minus 1 right parenthesis sin invisible function application blank k x over denominator 4 x to the power of 2 end exponent end fraction (x not equal to 0) and f(0) = 9 is continuous at x = 0 then k = ± 6.
    Statement-2 : For continuous function stack l i m with x rightwards arrow 0 belowf(x) = f(0)

    Statement-1 : If f(x) =fraction numerator left parenthesis e to the power of k x end exponent minus 1 right parenthesis sin invisible function application blank k x over denominator 4 x to the power of 2 end exponent end fraction (x not equal to 0) and f(0) = 9 is continuous at x = 0 then k = ± 6.
    Statement-2 : For continuous function stack l i m with x rightwards arrow 0 belowf(x) = f(0)

    Maths-General
    General
    Maths-

    Statement-I : Let f(x) = fraction numerator 1 minus tan invisible function application x over denominator 4 x minus pi end fraction, x not equal to fraction numerator pi over denominator 4 end fraction, xelement ofopen parentheses 0 comma fraction numerator pi over denominator 2 end fraction close parentheses. If f(x) is continuous in open parentheses 0 comma fraction numerator pi over denominator 2 end fraction close parentheses, Then f open parentheses fraction numerator pi over denominator 4 end fraction close parentheses = negative fraction numerator 1 over denominator 2 end fraction.
    Statement-II : f(x) is continuous at x = a ifstack l i m with x rightwards arrow a below f(x) = f(a)

    Statement-I : Let f(x) = fraction numerator 1 minus tan invisible function application x over denominator 4 x minus pi end fraction, x not equal to fraction numerator pi over denominator 4 end fraction, xelement ofopen parentheses 0 comma fraction numerator pi over denominator 2 end fraction close parentheses. If f(x) is continuous in open parentheses 0 comma fraction numerator pi over denominator 2 end fraction close parentheses, Then f open parentheses fraction numerator pi over denominator 4 end fraction close parentheses = negative fraction numerator 1 over denominator 2 end fraction.
    Statement-II : f(x) is continuous at x = a ifstack l i m with x rightwards arrow a below f(x) = f(a)

    Maths-General
    General
    Maths-

    Statement 1 : f(x) = xn sin open parentheses fraction numerator 1 over denominator x end fraction close parentheses is differentiable for all real values of x (n greater or equal than2).
    Statement 2 : For n greater or equal than 2, Right derivative = left derivative (for all real values of x).

    Statement 1 : f(x) = xn sin open parentheses fraction numerator 1 over denominator x end fraction close parentheses is differentiable for all real values of x (n greater or equal than2).
    Statement 2 : For n greater or equal than 2, Right derivative = left derivative (for all real values of x).

    Maths-General
    parallel
    General
    Chemistry-

    If H22 is mixed with Fe2+, which reaction is more likely:

    If H22 is mixed with Fe2+, which reaction is more likely:

    Chemistry-General
    General
    Chemistry-

    For the following cell reaction P b open parentheses s close parentheses plus H g subscript 2 end subscript S O subscript 4 end subscript open parentheses s close parentheses P b S O subscript 4 end subscript open parentheses s close parentheses plus 2 H g open parentheses l close parentheses E subscript text cell  end text end subscript superscript ring operator end superscript equals 0.92 V comma K subscript S p end subscript open parentheses P b S O subscript 4 end subscript close parentheses equals 2 cross times 10 to the power of negative 8 end exponent, K subscript S p end subscript open parentheses H g S O subscript 4 end subscript close parentheses equals 1 cross times 10 to the power of negative 6 end exponent Hence, Ecell is:

    For the following cell reaction P b open parentheses s close parentheses plus H g subscript 2 end subscript S O subscript 4 end subscript open parentheses s close parentheses P b S O subscript 4 end subscript open parentheses s close parentheses plus 2 H g open parentheses l close parentheses E subscript text cell  end text end subscript superscript ring operator end superscript equals 0.92 V comma K subscript S p end subscript open parentheses P b S O subscript 4 end subscript close parentheses equals 2 cross times 10 to the power of negative 8 end exponent, K subscript S p end subscript open parentheses H g S O subscript 4 end subscript close parentheses equals 1 cross times 10 to the power of negative 6 end exponent Hence, Ecell is:

    Chemistry-General
    General
    Chemistry-

    Extraction of zinc from zinc blende is achieved by-

    Extraction of zinc from zinc blende is achieved by-

    Chemistry-General
    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.