Maths-
General
Easy

Question

The point on the curve y2 = x the tangent at which makes an angle of 45º with x-axis will be given by

  1. (1/2, 1/2)    
  2. (1/2, 1/4)    
  3. (2,4)    
  4. (1/4,1/2)    

hintHint:

find the slope of the line and then find the value of a. substitute the values of a and m into the generalized coordinates of point of contact of tangent.

The correct answer is: (2,4)


    1/4, 1/2
    an angle of 45 degree with the x axis means that the slope = tan (45) = 1
    m=1
    a=1/4
    point of contact = (a/m2, 2a/m)
    =( ¼,1/2)

    the point of contact of a tangent with the curve is given by (x,y) =(a/m2, 2a/m). this is obtained by solving the equation of tangent with the equation of curve.

    Related Questions to study

    General
    Maths-

    The equation of the tangent to the parabola y = 2 + 4x –4x2 with slope –4 is

    equation of a straight line : y-y1=m(x-x1)
    m is given, calculate x1 and y1 by differentiating the equation of parabola and equating it with the slope.

    The equation of the tangent to the parabola y = 2 + 4x –4x2 with slope –4 is

    Maths-General

    equation of a straight line : y-y1=m(x-x1)
    m is given, calculate x1 and y1 by differentiating the equation of parabola and equating it with the slope.

    General
    Maths-

    The equation of the tangent at vertex to the parabola 4y2 + 6x = 8y + 7 is

    if the slope of a line is infinite, then it is parallel to the y axis and the equation becomes x=a, where x is the x intercept.
    Slope of the tangent : dy/dx 

    The equation of the tangent at vertex to the parabola 4y2 + 6x = 8y + 7 is

    Maths-General

    if the slope of a line is infinite, then it is parallel to the y axis and the equation becomes x=a, where x is the x intercept.
    Slope of the tangent : dy/dx 

    General
    Maths-

    The point where the line x + y = 1 touches the parabola y = x– x2 , is-

    the point of intersection of two curves can be found out by solving the equations of the two curves,

    The point where the line x + y = 1 touches the parabola y = x– x2 , is-

    Maths-General

    the point of intersection of two curves can be found out by solving the equations of the two curves,

    parallel
    General
    Maths-

    The equation of the tangent to the parabola y2 = 4x at the point (1, 2) is-

    Slope of tangent = dy/dx 
    Equation of line: y-y1 = m(x-x1)

    The equation of the tangent to the parabola y2 = 4x at the point (1, 2) is-

    Maths-General

    Slope of tangent = dy/dx 
    Equation of line: y-y1 = m(x-x1)

    General
    Maths-

    If a tangent to the parabola 4y2 = x makes an angle of 60º with the x- axis, then its point of contact is-

    point of contact = (a/m2, 2a/m)
    slope = tan ( angle made with the x axis)
    this gives us the value of m
    y^2 = x/4 = 4(1/16)x
    a = 1/16

    If a tangent to the parabola 4y2 = x makes an angle of 60º with the x- axis, then its point of contact is-

    Maths-General

    point of contact = (a/m2, 2a/m)
    slope = tan ( angle made with the x axis)
    this gives us the value of m
    y^2 = x/4 = 4(1/16)x
    a = 1/16

    General
    Maths-

    At which point the line x = my + fraction numerator a over denominator m end fraction touches the parabola x2 =4ay

    the point of contact is the point of intersection between the 2 curves, the parabola and the line. this can be obtained by solving the two equations.

    At which point the line x = my + fraction numerator a over denominator m end fraction touches the parabola x2 =4ay

    Maths-General

    the point of contact is the point of intersection between the 2 curves, the parabola and the line. this can be obtained by solving the two equations.

    parallel
    General
    Maths-

    For what value of k, the line 2y – x + k = 0 touches the parabola x2 + 4y = 0-

    when a quadratic equation has 2 equal roots, the D value is 0 . D= b^2 - 4ac.=0
    this gives us the possible value(s) of k

    For what value of k, the line 2y – x + k = 0 touches the parabola x2 + 4y = 0-

    Maths-General

    when a quadratic equation has 2 equal roots, the D value is 0 . D= b^2 - 4ac.=0
    this gives us the possible value(s) of k

    General
    chemistry-

    An element, X has the following isotopic composition, the weighted average atomic mass of the naturally- occurring element 'X' is closest to :

    An element, X has the following isotopic composition, the weighted average atomic mass of the naturally- occurring element 'X' is closest to :

    chemistry-General
    General
    Maths-

    The line ellx + my + n = 0 will touch the parabola y2 = 4ax, if

    a quadratic equation has equal roots if the D value is zero. this is the condition of the line touching the curve.

    The line ellx + my + n = 0 will touch the parabola y2 = 4ax, if

    Maths-General

    a quadratic equation has equal roots if the D value is zero. this is the condition of the line touching the curve.

    parallel
    General
    Maths-

    The straight line 2x + y –1= 0 meets the parabola y2 = 4x in

    when D> 0, two real and distinct roots
    when D=0, real and equal roots
    when D<0 imaginary roots.

    The straight line 2x + y –1= 0 meets the parabola y2 = 4x in

    Maths-General

    when D> 0, two real and distinct roots
    when D=0, real and equal roots
    when D<0 imaginary roots.

    General
    Maths-

    The line y = mx + c may touch the parabola y2 = 4a (x + a), if-

    the solution of the two curves gives us the quadratic equation. D=0 gives us the required answer.

    The line y = mx + c may touch the parabola y2 = 4a (x + a), if-

    Maths-General

    the solution of the two curves gives us the quadratic equation. D=0 gives us the required answer.

    General
    Maths-

    The straight line x + y = k touches the parabola y = x – x2, if k =

    since only one point of contact is present, D=0  gives the real root.

    The straight line x + y = k touches the parabola y = x – x2, if k =

    Maths-General

    since only one point of contact is present, D=0  gives the real root.

    parallel
    General
    Maths-

    If the line x + y –1 = 0 touches the parabola y2 = kx, then the value of k is-

    we can also solve for the two lines and make the D=0 for the resultant quadratic equation.

    If the line x + y –1 = 0 touches the parabola y2 = kx, then the value of k is-

    Maths-General

    we can also solve for the two lines and make the D=0 for the resultant quadratic equation.

    General
    Maths-

    If length of the two segments of focal chord to the parabola y2 = 8ax are 2 and 4, then the value of a is-

    the harmonic mean of the lengths (PS,QS) where S is the focus is equal to the half of latus rectum
    the parametric coordinates of the ends of focal chords are (at^2, 2at) and (a/t^2,-2a/t)

    If length of the two segments of focal chord to the parabola y2 = 8ax are 2 and 4, then the value of a is-

    Maths-General

    the harmonic mean of the lengths (PS,QS) where S is the focus is equal to the half of latus rectum
    the parametric coordinates of the ends of focal chords are (at^2, 2at) and (a/t^2,-2a/t)

    General
    Maths-

    If PSQ is the focal chord of the parabola y2 = 8x such that SP = 6. Then the length SQ is-

    the harmonic mean of the lengths (PS,QS) where S is the focus is equal to the half of latus rectum.

    If PSQ is the focal chord of the parabola y2 = 8x such that SP = 6. Then the length SQ is-

    Maths-General

    the harmonic mean of the lengths (PS,QS) where S is the focus is equal to the half of latus rectum.

    parallel

    card img

    With Turito Academy.

    card img

    With Turito Foundation.

    card img

    Get an Expert Advice From Turito.

    Turito Academy

    card img

    With Turito Academy.

    Test Prep

    card img

    With Turito Foundation.